【題目】 如圖,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D是直線AB上的一動(dòng)點(diǎn)(不和A、B重合),BE⊥CD于E,交直線AC于F.
(1)點(diǎn)D在邊AB上時(shí),試探究線段BD、AB和AF的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)點(diǎn)D在AB的延長(zhǎng)線或反向延長(zhǎng)線上時(shí),(1)中的結(jié)論是否成立?若不成立,請(qǐng)直接寫出正確結(jié)論.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析
【解析】 試題分析:(1)通過(guò)三角形全等的判定ASA證明△FAB≌△DAC,然后根據(jù)全等三角形的性質(zhì)可證得結(jié)論;
(2)根據(jù)題意,分為:點(diǎn)D在AB的延長(zhǎng)線上;點(diǎn)D在AB的反向延長(zhǎng)線上,兩種情況進(jìn)行討論即可.
試題解析:(1)如圖1,
∵BE⊥CD即∠BEC=90°,∠BAC=90°,
∴∠F+∠FBA=90°,∠F+∠FCE=90°.
∴∠FBA=∠FCE.
∵∠FAB=180°-∠DAC=90°,
∴∠FAB=∠DAC.
在△FAB和△DAC中,
AB=AC
∴△FAB≌△DAC(ASA).
∴FA=DA.
∴AB=AD+BD=FA+BD.
(2)(1)中的結(jié)論不成立.
點(diǎn)D在AB的延長(zhǎng)線上時(shí),AB=AF-BD;點(diǎn)D在AB的反向延長(zhǎng)線上時(shí),AB=BD-AF.
理由如下:
①當(dāng)點(diǎn)D在AB的延長(zhǎng)線上時(shí),如圖2.
同理可得:FA=DA.
則AB=AD-BD=AF-BD.
②點(diǎn)D在AB的反向延長(zhǎng)線上時(shí),如圖3.
同理可得:FA=DA.
則AB=BD-AD=BD-AF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=1,BC=,在AC邊上截取AD=BC,連接BD.
(1)通過(guò)計(jì)算,判斷AD2與ACCD的大小關(guān)系;
(2)求∠ABD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,動(dòng)點(diǎn)P從點(diǎn)C出發(fā),按C→B→A的路徑,以2cm每秒的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為時(shí),△ACP是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,兩個(gè)全等的等邊三角形的邊長(zhǎng)為1m,一個(gè)微型機(jī)器人由A點(diǎn)開始按ABCDBEA的順序沿等邊三角形的邊循環(huán)運(yùn)動(dòng),行走2012m停下,則這個(gè)微型機(jī)器人停在( )
A.點(diǎn)A處 B.點(diǎn)B處 C.點(diǎn)C處 D.點(diǎn)E處
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O為線段AB上任意一點(diǎn)(不與A、B重合),分別以AO、BO為一腰在AB的同側(cè)作等腰△AOC和等腰△BOD,OA=OC,OB=OD,∠AOC與∠BOD都是銳角,且∠AOC=∠BOD ,AD與BC交于點(diǎn)P.
(1)試說(shuō)明CB=AD;
(2)若∠COD =80°,求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)在世界杯足球比賽期間舉行促銷活動(dòng),并設(shè)計(jì)了兩種方案:一種是以商品價(jià)格的九五折優(yōu)惠的方式進(jìn)行銷售;一種是采用有獎(jiǎng)銷售的方式,具體措施是:①有獎(jiǎng)銷售自2009年6月9日起,發(fā)行獎(jiǎng)券10000張,發(fā)完為止;②顧客累計(jì)購(gòu)物滿400元,贈(zèng)送獎(jiǎng)券一張(假設(shè)每位顧客購(gòu)物每次都恰好湊足400元);③世界杯后,顧客持獎(jiǎng)券參加抽獎(jiǎng);④獎(jiǎng)項(xiàng)是:特等獎(jiǎng)2名,各獎(jiǎng)3000元獎(jiǎng)品;一等獎(jiǎng)10名,各獎(jiǎng)1000元獎(jiǎng)品;二等獎(jiǎng)20名,各獎(jiǎng)300元獎(jiǎng)品;三等獎(jiǎng)100名,各獎(jiǎng)100元獎(jiǎng)品;四等獎(jiǎng)200名,各獎(jiǎng)50元獎(jiǎng)品;紀(jì)念獎(jiǎng)5000名,各獎(jiǎng)10元獎(jiǎng)品,試就商場(chǎng)的收益而言,對(duì)兩種促銷方法進(jìn)行評(píng)價(jià),選用哪一種更為合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成證明并寫出推理根據(jù)
已知,如圖,∠1=132,∠ACB=48,∠2=∠3,F(xiàn)H⊥AB于H,
求證:CD⊥AB.
證明:∵∠1=132, ∠ACB=48
∴∠l+∠ACB=180
∴DE∥BC
∴∠2=∠DCB( )
又∵∠2=∠3
∴∠3=∠DCB( )
∴HF∥DC ( )
∴∠CDB=∠FHB. ( )
又∵FH⊥AB,
∴∠FHB=90
∴∠CDB=
∴CD⊥AB. ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)李老師給學(xué)生出了這樣一個(gè)問(wèn)題:探究函數(shù)y= 的圖象與性質(zhì),小斌根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y= 的圖象與性質(zhì)進(jìn)行了探究.下面是小斌的探究過(guò)程,請(qǐng)您補(bǔ)充完成:
(1)函數(shù)y= 的自變量x的取值范圍是:
(2)列出y與x的幾組對(duì)應(yīng)值,請(qǐng)直接寫出m的值,m= .
x | … | ﹣5 | ﹣4 | ﹣3 | ﹣2 | ﹣ | ﹣ | 0 | 1 | 2 | m | 4 | 5 | … |
y | … |
|
|
| 2 | 3 | ﹣1 | 0 |
|
|
|
|
| … |
(3)請(qǐng)?jiān)谄矫嬷苯亲鴺?biāo)系xOy中,描出以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),并畫出該函數(shù)的圖象;
(4)結(jié)合函數(shù)的圖象,寫出函數(shù)y= 的一條性質(zhì).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,∠B=60°,點(diǎn)M從點(diǎn)B出發(fā)沿射線BC方向,在射線BC上運(yùn)動(dòng).在點(diǎn)M運(yùn)動(dòng)的過(guò)程中,連結(jié)AM,并以AM為邊在射線BC上方,作等邊△AMN,連結(jié)CN.
(1)當(dāng)∠BAM= °時(shí),AB=2BM;
(2)請(qǐng)?zhí)砑右粋(gè)條件: ,使得△ABC為等邊三角形;
①如圖1,當(dāng)△ABC為等邊三角形時(shí),求證:BM=CN;
②如圖2,當(dāng)點(diǎn)M運(yùn)動(dòng)到線段BC之外時(shí),其它條件不變,①中結(jié)論BM=CN還成立嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com