【題目】如圖,拋物線y=﹣(x﹣k)2+經(jīng)過點D(﹣1,0),與x軸正半軸交于點E,與y軸交于點C,過點C作CB∥x軸交拋物線于點B.連接BD交y軸于點F.
(1)求點E的坐標.
(2)求△CFB的面積.
【答案】(1)E(3,0);(2).
【解析】
(1)把點D(-1,0)代入y=﹣(x﹣k)2+,求k=1,令y=0 有0=﹣(x﹣k)2+,解得x1=-1,x2=3,即可求解;
(2)求出BD的解析式:,OF=CF=,△CFB的面積=.
(1)把點D(﹣1,0)代入y=﹣(x﹣k)2+,
解得:k=1;
∴y=﹣(x﹣1)2+,
令y=0,有,解得x1=﹣1,x2=3,
∴點E(3,0);
(2)令x=0時,y=2,
當y=2時,有
解得x1=0,x2=2,
點B的坐標為:(2,2),點D(﹣1,0),
設直線BD的解析式為y=mx+n,
將點B、D的坐標代入一次函數(shù)表達式并解得:
直線BD的解析式為:,
∴OF=,CF=,
△CFB的面積=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,E是邊BC上的一動點(不與點B、C重合),連接DE、點C關于直線DE的對稱點為C′,連接AC′并延長交直線DE于點P,F是AC′的中點,連接DF.
(1)求∠FDP的度數(shù);
(2)連接BP,請用等式表示AP、BP、DP三條線段之間的數(shù)量關系,并證明;
(3)連接AC,若正方形的邊長為,請直接寫出△ACC′的面積最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:AB是⊙O的直徑,BD是⊙O的弦,延長BD到點C,使AB=AC,連接AC,過點D作DE⊥AC,垂足為 E.
(1)求證:DC=BD;
(2)求證:DE為⊙O的切線;
(3)若AB=12,AD=6,連接OD,求扇形BOD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點均在格點上,其中點A(5,4),B(1,3),將△AOB繞點O逆時針旋轉90°后得到△A1OB1.
(1)畫出△A1OB1;
(2)求在旋轉過程中線段AB、BO掃過的圖形的面積之和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C是以AB為直徑的半圓O上一點,連結AC,BC,分別以AC、BC為直徑作半圓,其中M,N分別是AC、BC為直徑作半圓弧的中點,,的中點分別是P,Q.若MP+NQ=7,AC+BC=26,則AB的長是( 。
A.17B.18C.19D.20
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC的頂點B在反比例函數(shù)的圖象上,AC邊在x軸上,已知∠ACB=90°,∠A=30°,BC=4,則圖中陰影部分的面積是_________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明在教學樓的窗戶A處,測量樓前的一棵樹CD的高.現(xiàn)測得樹頂C處的俯角為45°,樹底D處的俯角為60°,樓底到大樹的距離BD為10米.請你幫助小明計算樹的高度(精確到0.1米).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c過頂點A(0,2),以原點O為圓心,OA為半徑的圓與拋物線的另兩個交點為B,C,且B在C的左側,△ABC有一個內角為60°.
(1)求拋物線的解析式.
(2)若MN與直線y=﹣2x平行,M(x1,y1),N(x2,y2),M,N都在拋物線上,且M,N位于直線BC的兩側,y1>y2,ME⊥BC于E,NF⊥BC于F,解決以下問題:
①求證:.
②求△MBC外心的縱坐標的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,E是CD的延長線上一點,BE與AD交于點F,CD=2DE.若△DEF的面積為a,則平行四邊形ABCD的面積為 ▲ (用a的代數(shù)式表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com