【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形 CDE 的腰 CD=2 在 x 軸上,∠ECD=45°,將三角形 CDE 繞點(diǎn) C 逆時(shí)針旋轉(zhuǎn) 75°,點(diǎn) E 的對(duì)應(yīng)點(diǎn) N 恰好落在 y 軸上,則點(diǎn) N 的坐標(biāo)為( )
A. (0,3) B. (0,2) C. (0, ) D. (0, )
【答案】C
【解析】
根據(jù)旋轉(zhuǎn)得出∠NCE=75°,求出∠NCO,由 CD=2,利用勾股定理求出 CE 的長(zhǎng)即為 CN 的長(zhǎng),即 可求出 ON 的長(zhǎng)度
∵將三角形 CDE 繞點(diǎn) C 逆時(shí)針旋轉(zhuǎn) 75°,點(diǎn) E 的對(duì)應(yīng)點(diǎn) N 恰好落在 OA 上,
∴∠ECN=75°,
∵∠ECD=45°,
∴∠NCO=180°﹣75°﹣45°=60°,
∵AO⊥OB,
∴∠AOB=90°,
∴∠ONC=30°,
∵等腰直角三角形DCE 旋轉(zhuǎn)到△CMN,
∴△CMN 也是等腰直角三角形,
∵CM=2,
∴CN=2,
∴OC=
∴ON=
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,4),點(diǎn)B在x正半軸上,且∠ABO=30度.動(dòng)點(diǎn)P在線段AB上從點(diǎn)A向點(diǎn)B以每秒個(gè)單位的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.在x軸上取兩點(diǎn)M,N作等邊△PMN.
(1)求直線AB的解析式;
(2)求等邊△PMN的邊長(zhǎng)(用t的代數(shù)式表示),并求出當(dāng)?shù)冗?/span>△PMN的頂點(diǎn)M運(yùn)動(dòng)到與原點(diǎn)O重合時(shí)t的值;
(3)如果取OB的中點(diǎn)D,以OD為邊在Rt△AOB內(nèi)部作如圖2所示的矩形ODCE,點(diǎn)C在線段AB上.設(shè)等邊△PMN和矩形ODCE重疊部分的面積為S,請(qǐng)求出當(dāng)0≤t≤2秒時(shí)S與t的函數(shù)關(guān)系式,并求出S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算下列各式,然后回答問(wèn)題
(x+4)(x+3)=
(x+4)(x-3)=
(x-4)(x+3)=
(x-4)(x-3)=
(1)有上面各式總結(jié)規(guī)律:一般地,(x+p)(x+q)=
(2)運(yùn)用上述規(guī)律,直接寫(xiě)出下式的結(jié)果:(x-199)(x+201)=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將長(zhǎng)方形紙片ABCD沿EF折疊,使點(diǎn)A與點(diǎn)C重合,點(diǎn)D落在點(diǎn)G處,EF為折痕.
(1)求證:△FGC≌△EBC;
(2)試判斷△CEF的形狀,并證明你的結(jié)論;
(3)若AB=8,AD=4,求四邊形ECGF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ABC中,∠B=90,AB=6cm,BC=8cm.
(1)點(diǎn)P從點(diǎn)A開(kāi)始沿AB邊向B以1cm/s的速度移動(dòng),點(diǎn)Q從B點(diǎn)開(kāi)始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng).如果P,Q分別從A,B同時(shí)出發(fā).
①經(jīng)過(guò)幾秒,使△PBQ的面積等于8?
②線段PQ能否將△ABC分成面積相等的兩部分?若能,求出運(yùn)動(dòng)時(shí)間;若不能說(shuō)明理由.
(2)若P點(diǎn)沿射線AB方向從A點(diǎn)出發(fā)以1cm/s的速度移動(dòng),點(diǎn)Q沿射線CB方向從C點(diǎn)出發(fā)以2cm/s的速度移動(dòng),P,Q同時(shí)出發(fā),問(wèn)幾秒后,△PBQ的面積為1?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=25°,O為AB的中點(diǎn). 將OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)θ °至OP(0<θ<180),當(dāng)△BCP恰為軸對(duì)稱(chēng)圖形時(shí),θ的值為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為養(yǎng)成學(xué)生課外閱讀的習(xí)慣,各學(xué)校普遍開(kāi)展了“我的夢(mèng).中國(guó)夢(mèng)”課外閱讀活動(dòng).某校為了解七年級(jí)1200名學(xué)生課外日閱讀所用時(shí)間情況,從中隨機(jī)抽查了部分同學(xué),進(jìn)行了相關(guān)統(tǒng)計(jì),整理并繪制出如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖,請(qǐng)根據(jù)圖表信息解答下列問(wèn)題:
(1)表中 a= ,b= ;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖中空缺的部分;
(3)樣本中,學(xué)生日閱讀所用時(shí)間的中位數(shù)落在第 組;
(4)請(qǐng)估計(jì)該校七年級(jí)學(xué)生日閱讀量不足 1 小時(shí)的人數(shù).
組別 | 時(shí)間段(小時(shí)) | 頻數(shù) | 頻率 |
1 | 0≤x<0.5 | 10 | 0.05 |
2 | 0.5≤x<1.0 | 20 | 0.10 |
3 | 1.0≤x<1.5 | 80 | b |
4 | 1.5≤x<2.0 | a | 0.35 |
5 | 2.0≤x<2.5 | 12 | 0.06 |
6 | 2.5≤x<3.0 | 8 | 0.04 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一列快車(chē)從甲地駛往乙地,一列慢車(chē)從乙地駛往甲地,兩車(chē)同時(shí)出發(fā),設(shè)慢車(chē)行駛的時(shí)間為,兩車(chē)之間的距離為,圖中的折線表示與之間的函數(shù)關(guān)系,根據(jù)圖象進(jìn)行一下探究:
信息讀。1)甲、乙兩地之間的距離為______:
(2)請(qǐng)解釋圖中點(diǎn)的實(shí)際意義:_______
圖象理解(3)求慢車(chē)和快車(chē)的速度:
(4)求線段所表示的與之間的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍:
問(wèn)題解決(5)若第二列快車(chē)也從甲地出發(fā)駛往乙地,速度與第一列快車(chē)相同,在第一列快車(chē)與慢車(chē)相遇分鐘后,第二列快車(chē)與慢車(chē)相遇,求第二列快車(chē)比第一列快車(chē)晚出發(fā)多少小時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖所示,直線y=-x+3與坐標(biāo)軸分別交于點(diǎn)A,B,與直線y=x交于點(diǎn)C,線段OA上的點(diǎn)Q以每秒1個(gè)單位的速度從點(diǎn)O出發(fā)向點(diǎn)A作勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,連結(jié)CQ.
(1)求出點(diǎn)C的坐標(biāo);
(2)若△OQC是等腰直角三角形,則t的值為________;
(3)若CQ平分△OAC的面積,求直線CQ對(duì)應(yīng)的函數(shù)表達(dá)式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com