【題目】如圖,已知拋物線y=﹣ x2 x+2與x軸交于A、B兩點,與y軸交于點C

(1)求點A,B,C的坐標;
(2)點E是此拋物線上的點,點F是其對稱軸上的點,求以A,B,E,F(xiàn)為頂點的平行四邊形的面積;
(3)此拋物線的對稱軸上是否存在點M,使得△ACM是等腰三角形?若存在,請求出點M的坐標;若不存在,請說明理由.

【答案】
(1)

解:令y=0得﹣ x2 x+2=0,

∴x2+2x﹣8=0,

x=﹣4或2,

∴點A坐標(2,0),點B坐標(﹣4,0),

令x=0,得y=2,∴點C坐標(0,2)


(2)

解:由圖像①AB為平行四邊形的邊時,

∵AB=EF=6,對稱軸x=﹣1,

∴點E的橫坐標為﹣7或5,

∴點E坐標(﹣7,﹣ )或(5,﹣ ),此時點F(﹣1,﹣ ),

∴以A,B,E,F(xiàn)為頂點的平行四邊形的面積=6× =

②當點E在拋物線頂點時,點E(﹣1, ),設對稱軸與x軸交點為M,令EM與FM相等,則四邊形AEBF是菱形,此時以A,B,E,F(xiàn)為頂點的平行四邊形的面積= ×6× =


(3)

解:如圖所示,

①當C為等腰三角形的頂角的頂點時,CM1=CA,CM2=CA,作M1N⊥OC于N,

在RT△CM1N中,CN= = ,

∴點M1坐標(﹣1,2+ ),點M2坐標(﹣1,2﹣ ).

②當M3為等腰三角形的頂角的頂點時,∵直線AC解析式為y=﹣x+2,

線段AC的垂直平分線為y=x,

∴點M3坐標為(﹣1,﹣1).

③當點A為等腰三角形的頂角的頂點的三角形不存在.

綜上所述點M坐標為(﹣1,﹣1)或(﹣1,2+ )或(﹣1,2﹣ ).


【解析】(1)分別令y=0,x=0,即可解決問題.(2)由圖像可知AB只能為平行四邊形的邊,分E點為拋物線上的普通點和頂點2種情況討論,即可求出平行四邊形的面積.(3)分A、C、M為頂點三種情形討論,分別求解即可解決問題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,下列說法錯誤的是( ).

①∠1∠3是同位角;②∠1∠5是同位角;③∠1∠2是同旁內角;④∠1∠4是內錯角.

A. ①② B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行于x軸的直線AC分別交拋物線y1=x2(x≥0)與y2= (x≥0)于B、C兩點,過點C作y軸的平行線交y1于點D,直線DE∥AC,交y2于點E,則 =

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=ax+c(a≠0)與二次函數(shù)y=ax2+bx+c(a≠0)在同一平面直角坐標系中的圖像可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】佳佳果品店在批發(fā)市場購買某種水果銷售,第一次用1200元購進若干千克,并以每千克8元出售,很快售完.由于水果暢銷,第二次購買時,每千克的進價比第一次提高了10%,用1452元所購買的數(shù)量比第一次多20千克,以每千克9元售出100千克后,因出現(xiàn)高溫天氣,水果不易保鮮,為減少損失,便降價50%售完剩余的水果.

1)求第一次水果的進價是每千克多少元?

2)該果品店在這兩次銷售中,總體上是盈利還是虧損?盈利或虧損了多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了參加學校舉行的傳統(tǒng)文化知識競賽,某班進行了四次模擬訓練,將成績優(yōu)秀的人數(shù)和優(yōu)秀率繪制成如下兩個不完整的統(tǒng)計圖:

(1)該班總人數(shù)是 ;

(2)根據計算,請你補全兩個統(tǒng)計圖;

(3)觀察補全后的統(tǒng)計圖,寫出一條你發(fā)現(xiàn)的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)2﹣(﹣4)+3

(2)﹣32÷(﹣2)3

(3)(+)×12

(4)﹣13+[(﹣4)2﹣(1﹣32)×2]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了慶祝即將到來的2018年國慶節(jié),某校舉行了書法比賽,賽后整理了參賽同學的成績,并制作了如下兩幅不完整的統(tǒng)計圖表

分數(shù)段

頻數(shù)

頻率

60≤x<70

30

0.15

70≤x<80

m

0.45

80≤x<90

60

n

90≤x<100

20

0.1

請根據以上圖表提供的信息,解答下列問題:

(1)這次共調查了   名學生;表中的數(shù)m=   ,n=   

(2)請補全頻數(shù)直方圖;

(3)若繪制扇形統(tǒng)計圖,則分數(shù)段60≤x<70所對應的扇形的圓心角的度數(shù)是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某日,正在我國南海海域作業(yè)的一艘大型漁船突然發(fā)生險情,相關部門接到求救信號后,立即調遣一架直升飛機和一艘剛在南海巡航的漁政船前往救援.當飛機到達距離海面3000米的高空C處,測得A處漁政船的俯角為60°,測得B處發(fā)生險情漁船的俯角為30°,請問:此時漁政船和漁船相距多遠?(結果保留根號)

查看答案和解析>>

同步練習冊答案