【題目】如圖,在菱形ABCD中MN分別在AB、CD上且AM=CN,MN與AC交于點(diǎn)O,連接BO若∠DAC=62°,則∠OBC的度數(shù)為( 。
A. 28°B. 52°C. 62°D. 72°
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,經(jīng)過點(diǎn)C的⊙O與斜邊AB相切于點(diǎn)P.
(1)如圖①,當(dāng)點(diǎn)O在AC上時,試說明2∠ACP=∠B;
(2)如圖②,AC=8,BC=6,當(dāng)點(diǎn)O在△ABC外部時,求CP長的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用棋子擺成的“上”字型圖案如圖所示現(xiàn)察此圖案的規(guī)律,并回答:
(1)依照此規(guī)律,第五個圖形中共有 個棋子,第八個圖形中共有 個棋子.
(2)第(為正整數(shù))個圖形中共有 個棋子.
(3)根據(jù)(2)中的結(jié)論,第幾個圖形中有2022個棋子?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,完成(1)、(2)小題.在平面直角坐標(biāo)系中,已知軸上兩點(diǎn),的距離記作,如果,是平面上任意兩點(diǎn),我們可以通過構(gòu)造直角三角形來求間的距離,如圖1,過點(diǎn)、分別向軸、軸作垂線,和,,垂足分別是,,,,直線交于點(diǎn),在中,,∴∴,我們稱此公式為平面直角坐標(biāo)系內(nèi)任意兩點(diǎn),間的距離公式
(1)直接應(yīng)用平面內(nèi)兩點(diǎn)間距離公式計算點(diǎn),的距離為_________
(2)如圖2,已知在平面直角坐標(biāo)系中有兩點(diǎn),,為軸上任意一點(diǎn),求的最小值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為(3,8),該二次函數(shù)圖象的對稱軸與x軸的交點(diǎn)為A,M是這個二次函數(shù)圖象上的點(diǎn),O是原點(diǎn).
(1)不等式b+2c+8≥0是否成立?請說明理由;
(2)設(shè)S是△AMO的面積,求滿足S=9的所有點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖形都是由相同的小正方形按照一定規(guī)律擺放而成,其中第1個圖共有3個小正方形,第2個圖共有8個小正方形,第3個圖共有15個小正方形,第4個圖共有24個小正方形,…,照此規(guī)律排列下去,則第8個圖中小正方形的個數(shù)是( )
A. 48B. 63C. 80D. 99
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知和互相垂直的兩條直線、,垂足為點(diǎn).與關(guān)于直線成軸對稱,與關(guān)于直線成對稱.那么下列說法正確的是( )
A.可以由平移得到B.可以由翻折得到
C.與成軸對稱D.與成中心對稱
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于a的方程2(a﹣2)=a+4的解也是關(guān)于x的方程2(x﹣3)﹣b=7的解.
(1)求a、b的值;
(2)若線段AB=a,在直線AB上取一點(diǎn)P,恰好使=b,點(diǎn)Q為PB的中點(diǎn),請畫出圖形并求出線段AQ的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com