如圖,已知CB是⊙O的弦,CD是⊙O的直徑,點(diǎn)A為CD延長線上一點(diǎn),BC=AB,∠CAB=30°.
(1)求證:AB是⊙O的切線;(2)若⊙O的半徑為2,求的長.
(1)證明見解析(2)
【解析】解:(1)證明:如圖,連接OB,
∵BC=AB,∠CAB=30°,∴∠ACB=∠CAB=30°。
又∵OC=OB,∴∠CBO=∠ACB=30°。
∴∠AOB=∠CBO+∠ACB=60°。
在△ABO中,∠CAB=30°,∠AOB=60°,∴∠ABO=90°,即AB⊥OB。
∴AB為圓O的切線。
(2)∵OB=2,∠BOD=60°,
∴的長度=。
(1)連接OB,如圖所示,由BC=AB,利用等邊對(duì)等角得到一對(duì)角相等,由∠CAB的度數(shù)得出
∠ACB的度數(shù),再由OC=OB,利用等邊對(duì)等角得到一對(duì)角相等,確定出∠CBO,由外角的性質(zhì)求出∠AOB的度數(shù),在△AOB中,利用三角形的內(nèi)角和定理求出∠ABO為90°,可得出AB為圓O的切線。
(2)直接應(yīng)用弧長公式計(jì)算即可。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044
如圖,已知CB是⊙O的切線,C是切點(diǎn),OB交⊙O于點(diǎn)D,∠B=30°,BD=6cm,求BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(福建龍巖卷)數(shù)學(xué)(帶解析) 題型:解答題
如圖,已知CB是⊙O的弦,CD是⊙O的直徑,點(diǎn)A為CD延長線上一點(diǎn),BC=AB,∠CAB=30°.
(1)求證:AB是⊙O的切線;(2)若⊙O的半徑為2,求的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com