【題目】如圖,△中,、的角平分線、交于點(diǎn),延長(zhǎng)、,,則下列結(jié)論中正確的個(gè)數(shù)是(

CP平分∠ACF;          ②∠ABC+2APC=180°;

③∠ACB=2APB;        、苋PMBE,PNBC,則AM+CN=AC;

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】D

【解析】

①作PDACD.由角平分線的性質(zhì)得出PM=PNPM=PD,得出PM=PN=PD,即可得出①正確;

②首先證出∠ABC+MPN=180°,證明RtPAMRtPADHL),得出∠APM=APD,同理:RtPCDRtPCNHL),得出∠CPD=CPN,即可得出②正確;

③由角平分線和三角形的外角性質(zhì)得出∠CAE=ABC+ACB,∠PAM=ABC+APB,得出∠ACB=2APB,③正確;

④由全等三角形的性質(zhì)得出AD=AMCD=CN,即可得出④正確;即可得出答案.

解:①作PDACD

PB平分∠ABC,PA平分∠EAC,PMBEPNBF,

PM=PN,PM=PD,

PM=PN=PD,

∴點(diǎn)P在∠ACF的角平分線上,故①正確;

②∵PMABPNBC,

∴∠ABC+90°+MPN+90°=360°

∴∠ABC+MPN=180°,

RtPAMRtPAD中,

,
RtPAMRtPADHL),

∴∠APM=APD

同理:RtPCDRtPCNHL),

∴∠CPD=CPN

∴∠MPN=2APC,

∴∠ABC+2APC=180°,②正確;

③∵PA平分∠CAE,BP平分∠ABC

∴∠CAE=ABC+ACB,∠PAM=ABC+APB,

∴∠ACB=2APB,③正確;

④∵RtPAMRtPADHL),

AD=AM,

同理:RtPCDRtPCNHL),

CD=CN,

AM+CN=AD+CD=AC,④正確;

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊ABC的邊長(zhǎng)是2,D、E分別為AB、AC的中點(diǎn),過(guò)點(diǎn)EEFCDBC的延長(zhǎng)線于點(diǎn)F,連接CD

1)求證:DECF

2)求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 是半徑為的⊙的直徑, 是圓上異于, 的任意一點(diǎn), 的平分線交⊙于點(diǎn),連接,△的中位線所在的直線與⊙相交于點(diǎn),則的長(zhǎng)是____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC的平分線與∠ACB的外角的平分線相交于點(diǎn)P,連接AP

1)求證:PA平分∠BAC的外角∠CAM;

2)過(guò)點(diǎn)CCEAP,E是垂足,并延長(zhǎng)CEBM于點(diǎn)D.求證:CE=ED

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:∠AOB=30°,點(diǎn)P是∠AOB 內(nèi)部及射線OB上一點(diǎn),且OP=10cm

1)若點(diǎn)P在射線OB上,過(guò)點(diǎn)P作關(guān)于直線OA的對(duì)稱點(diǎn),連接O、P, 如圖①求P的長(zhǎng).

2)若過(guò)點(diǎn)P分別作關(guān)于直線OA、直線OB的對(duì)稱點(diǎn),連接O、O如圖②, 的長(zhǎng).

3)若點(diǎn)P在∠AOB 內(nèi),分別在射線OA、射線OB找一點(diǎn)M,N,使PMN的周長(zhǎng)取最小值,請(qǐng)直接寫出這個(gè)最小值.如圖③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有四張正面分別標(biāo)有數(shù)字21,﹣3,﹣4的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從四張卡片中隨機(jī)地摸取一張不放回,將該卡片上的數(shù)字記為m,再隨機(jī)地摸取一張,將卡片上的數(shù)字記為n

1)請(qǐng)畫(huà)出樹(shù)狀圖并寫出(mn)所有可能的結(jié)果;

2)求所選出的m,n能使一次函數(shù)y=mx+n的圖象經(jīng)過(guò)第二、三、四象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的一元二次方程(x–2)(x–3)=m有實(shí)數(shù)根x1x2,且x1<x2,則下列結(jié)論中錯(cuò)誤的是

A. 當(dāng)m=0時(shí),x1=2,x2=3

B. m>–

C. 當(dāng)m>0時(shí),2<x1<x2<3

D. 二次函數(shù)y=(xx1)(xx2)+m的圖象與x軸交點(diǎn)的坐標(biāo)為(2,0)和(3,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題正確的是( )

A. 一組對(duì)邊相等,另一組對(duì)邊平行的四邊形一定是平行四邊形

B. 對(duì)角線相等的四邊形一定是矩形

C. 兩條對(duì)角線互相垂直的四邊形一定是菱形

D. 兩條對(duì)角線相等且互相垂直平分的四邊形一定是正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線軸、軸分別相交于點(diǎn)A和B.

(1)直接寫出坐標(biāo):點(diǎn)A ,點(diǎn)B ;

2以線段AB為一邊在第一象限內(nèi)作ABCD,其頂點(diǎn)D(, )在雙曲線 ()上.

①求證:四邊形ABCD是正方形;

②試探索:將正方形ABCD沿軸向左平移多少個(gè)單位長(zhǎng)度時(shí),點(diǎn)C恰好落在雙曲線 ()上.

查看答案和解析>>

同步練習(xí)冊(cè)答案