將拋物線y=3x2的圖象先向上平移3個單位,再向右平移4個單位所得的解析式為(     )
A.B.
C.D.
C.

試題分析:拋物線y=3x2的頂點坐標(biāo)為(0,0),向上平移3個單位,再向右平移4個單位,所得的拋物線的頂點坐標(biāo)為(3,2),根據(jù)頂點式可確定所得拋物線解析式:
依題意可知,原拋物線頂點坐標(biāo)為(0,0),平移后拋物線頂點坐標(biāo)為(3,2).
又∵平移不改變二次項系數(shù),∴所得拋物線解析式為:
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=2x2﹣2與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C.

(1)寫出以A,B,C為頂點的三角形面積;
(2)過點E(0,6)且與x軸平行的直線l1與拋物線相交于M、N兩點(點M在點N的左側(cè)),以MN為一邊,拋物線上的任一點P為另一頂點做平行四邊形,當(dāng)平行四邊形的面積為8時,求出點P的坐標(biāo);
(3)過點D(m,0)(其中m>1)且與x軸垂直的直線l2上有一點Q(點Q在第一象限),使得以Q,D,B為頂點的三角形和以B,C,O為頂點的三角形相似,求線段QD的長(用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,拋物線與y軸交于點C(0,4),與x軸交于點A、B,點A的坐標(biāo)為(4,0).

(1)求該拋物線的解析式;
(2)點Q是線段AB上的動點,過點Q作QE∥AC,交BC于點E,連接CQ.當(dāng)△CQE的面積最大時,求點Q的坐標(biāo);
(3)若平行于x軸的動直線與該拋物線交于點P,與直線AC交于點F,點D的坐標(biāo)為(2,0).問:是否存在這樣的直線,使得△ODF是等腰三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△ABC的三個頂點坐標(biāo)分別為A(-4,0),B(1,0),C(-2,6).

(1)求經(jīng)過點A,B,C三點的拋物線解析式.
(2)設(shè)直線BC交y軸于點E,連結(jié)AE,求證:AE=CE;
(3)設(shè)拋物線與y軸交于點D,連結(jié)AD交BC于點F,求證:以A,B,F(xiàn)為頂點的三角形與△ABC相似,并求:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=x2+bx+c與y=x的圖象如圖所示,有以下結(jié)論:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④當(dāng)1<x<3時,x2+(b﹣1)x+c<0.其中正確的個數(shù)為(   )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若將函數(shù)的圖像向右平行移動1個單位,則它與直線的交點坐標(biāo)是(   )
A.(-3,0)和(5,0)B.(-2,b)和(6,b)
C.(-2,0)和(6,0)D.(-3,b)和(5,b)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若二次函數(shù)的圖象經(jīng)過點P(-3,2),則該圖象必經(jīng)過點(   )
A.(2,3) B.(-2,-3)C.(3,2)D.(-3,-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

寫出一個開口向下、且經(jīng)過點(-1,2)的二次函數(shù)的表達(dá)式                

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)的圖象的頂點坐標(biāo)是(    )
A.(-1,3)B.(1,3)C.(1,-3)D.(-1,-3)

查看答案和解析>>

同步練習(xí)冊答案