如圖,請在下列四個等式中,選出兩個作為條件,推出△AED是等腰三角形,并予以證明.(寫出一種即可)
等式:①AB=DC,②BE=CE,③∠B=∠C,④∠BAE=∠CDE.
已知:
求證:△AED是等腰三角形.
證明:

【答案】分析:根據(jù)等腰三角形的判定方法,即在一三角形中等邊對等角或等角對等邊,可選①③來證明△ABE≌△DCE,從而得到AE=DE,即△AED是等腰三角形.
(或①④,或②③,或②④.)
解答:解:已知:①③(或①④,或②③,或②④)
證明:在△ABE和△DCE中

∴△ABE≌△DCE;
∴AE=DE;
△AED是等腰三角形.
點(diǎn)評:此題考查學(xué)生對等腰三角形的判定方法及全等三角形的判定的掌握情況;發(fā)現(xiàn)并利用全等三角形是正確解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀:如圖1,在△ABC和△DEF中,∠ABC=∠DEF=90°,AB=DE=a,BC=EF=b(a<b),B、C、D、E四點(diǎn)都在直線m上,點(diǎn)B與點(diǎn)D重合.
連接AE、FC,我們可以借助于S△ACE和S△FCE的大小關(guān)系證明不等式:a2+b2>2ab(b>a>0).
證明過程如下:
∵BC=b,BE=a,EC=b-a.
S△ACE=
1
2
EC•AB=
1
2
(b-a)a
,S△FCE=
1
2
EC•FE=
1
2
(b-a)b

∵b>a>0
∴S△FCE>S△ACE
1
2
(b-a)b>
1
2
(b-a)a

∴b2-ab>ab-a2
∴a2+b2>2ab
解決下列問題:
(1)現(xiàn)將△DEF沿直線m向右平移,設(shè)BD=k(b-a),且0≤k≤1.如圖2,當(dāng)BD=EC時,k=
 
.利用此圖,仿照上述方法,證明不等式:a2+b2>2ab(b>a>0).
(2)用四個與△ABC全等的直角三角形紙板進(jìn)行拼接,也能夠借助圖形證明上述不等式.請你畫出一個示意圖,并簡要說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,把邊長為2cm的正方形剪成四個全等的直角三角形,請用這四個直角三角形拼成符合下列要求的圖形.(全部用上,互不重合且不留空隙),并把你的拼法依照圖示按實(shí)際大小畫在方格內(nèi)(方格為1cm×1cm)
(1)不是正方形的菱形;(一個)
(2)不是正方形的矩形;(一個)
(3)梯形;(一個)
(4)不是矩形和菱形的平行四邊形;(一個)
(5)不是梯形和平行四邊形的凸四邊形;(一個)
(6)與以上畫出的圖形不全等的其他凸四邊形;(畫出的圖形互不全等,能畫出幾個畫幾個,至少畫三個)
(7)畫凸多邊形.(與上面畫的圖形不一樣)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,把長為2cm的正方形剪成四個全等的直角三角形,請用這四個直角三角形(全部用上)拼成下列符合要求的圖形(互不重疊且沒有空隙),并把你的拼法畫在下列的方格紙內(nèi)(方格為1cm×1cm)
(1)畫一個不是正方形的菱形; 
(2)畫一個不是正方形的矩形
(3)畫一個不是矩形也不是菱形的平行四邊形
 (4)畫一個梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABCD中,分別以AB、AD為邊向外作等邊△ABE、△ADF,延長CB交AE于點(diǎn)G,點(diǎn)G在點(diǎn)A,
E之間,連接CE、CF、EF,有下列四個結(jié)論:
①△CDF≌△EBC;     ②∠CDF=∠EAF;
③△ECF是等邊三角形;  ④CG⊥AE,
請把你認(rèn)為正確的結(jié)論的序號填在橫線上
①②③
①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們發(fā)現(xiàn),用不同的方式表示同一圖形的面積可以解決線段長度之間關(guān)系的有關(guān)問題,這種方法稱為等面積法,這是一種重要的數(shù)學(xué)方法.請你用等面積法來探究下列兩個問題:
(1)如圖1是著名的趙爽弦圖,由四個全等的直角三角形拼成,請你用它來驗證勾股定理;
(2)如圖2,在Rt△ABC中,∠ACB=90°,CD是AB邊上的高,AC=4,BC=3,求CD的長度.

查看答案和解析>>

同步練習(xí)冊答案