【題目】已知正比例函數(shù)y=kx.

(1)若函數(shù)圖象經(jīng)過第二、四象限,則k的范圍是什么?

(2)點(1,-2)在它的圖象上,求它的表達(dá)式.

【答案】(1)k<0;(2)y=-2x

【解析】分析:(1)根據(jù)正比例函數(shù)圖象的性質(zhì),;(2)只需把點的坐標(biāo)代入即可計算.

本題解析:

(1)∵函數(shù)圖象經(jīng)過第二、四象限,

∴k<0;

(2)當(dāng)x=1,y=-2時,則k=-2,

即:y=-2x。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正三角形中心旋轉(zhuǎn)度的整倍數(shù)之后能和自己重合.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市教研室對2008年嘉興市中考數(shù)學(xué)試題的選擇題作了錯題分析統(tǒng)計,受污損的下表記錄了n位同學(xué)的錯題分布情況:已知這n人中,平均每題有11人答錯,同時第6題答錯的人數(shù)恰好是第5題答錯人數(shù)的1.5倍,且第2題有80%的同學(xué)答對.則第5題有 人答對.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸交于A、B兩點,與y軸交于點C,且OA=2,OC=3

(1)求拋物線的解析式;

(2)作RtOBC的高OD,延長OD與拋物線在第一象限內(nèi)交于點E,求點E的坐標(biāo);

(3)在x軸上方的拋物線上,是否存在一點P,使四邊形OBEP是平行四邊形?若存在,求出點P的坐標(biāo);若不存在,請說明理由;

在拋物線的對稱軸上,是否存在上點Q,使得BEQ的周長最小?若存在,求出點Q的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在A,B兩地之間有汽車站C站,客車由A地駛往C站,貨車由B地駛往A地.兩車同時出發(fā),勻速行駛.圖2是客車、貨車離C站路程y1,y2千米與行駛時間x小時之間的函數(shù)關(guān)系圖象.

1填空:A,B兩地相距 千米;

2求兩小時后,貨車離C站的路程y2與行駛時間x之間的函數(shù)關(guān)系式;

3客、貨兩車何時相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【探索新知】
已知平面上有n(n為大于或等于2的正整數(shù))個點A1 , A2 , A3 , …An , 從第1個點A1開始沿直線滑動到另一個點,且同時滿足以下三個條件:①每次滑動的距離都盡可能最大;②n次滑動將每個點全部到達(dá)一次;③滑動n次后必須回到第1個點A1 , 我們稱此滑動為“完美運動”,且稱所有點為“完美運動”的滑動點,記完成n個點的“完美運動”的路程之和為Sn
(1)如圖1,滑動點是邊長為a的等邊三角形三個頂點,此時S3=;

(2)如圖2,滑動點是邊長為a,對角線(線段A1A2、A2A4)長為b的正方形四個頂點,此時S4=
【深入研究】
現(xiàn)有n個點恰好在同一直線上,相鄰兩點距離都為1,

(3)如圖3,當(dāng)n=3時,直線上的點分別為A1、A2、A3
為了完成“完美運動”,滑動的步驟給出如圖4所示的兩種方法:
方法1:A1→A3→A2→A1 , 方法2:A1→A2→A3→A1
①其中正確的方法為
A.方法1 B.方法2 C.方法1和方法2
②完成此“完美運動”的S3=


(4)當(dāng)n分別取4,5時,對應(yīng)的S4= , S5=
(5)若直線上有n個點,請用含n的代數(shù)式表示Sn

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,小紅將一張直角梯形紙片沿虛線剪開,得到矩形和三角形兩張紙片,測得AB=15,AD=12在進(jìn)行如下操作時遇到了下面的幾個問題,請你幫助解決

(1)將EFG的頂點G移到矩形的頂點B處,再將三角形繞點B順時針旋轉(zhuǎn)使E點落在CD邊上,此時,EF恰好經(jīng)過點A(如圖2)求FB的長度

(2)在(1)的條件下,小紅想用EFG包裹矩形ABCD,她想了兩種包裹的方法如圖3、圖4,請問哪種包裹紙片的方法使得未包裹住的面積大?(紙片厚度忽略不計)請你通過計算說服小紅。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD中,對角線AC、BD相交于點O,BD=2AD,E、F、G分別是OC、OD,AB的中點.下列結(jié)論:①EG=EF; ②△EFG≌△GBE; ③FB平分∠EFG;④EA平分∠GEF;⑤四邊形BEFG是菱形.
其中正確的是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O為直線AB上一點,過點O作射線OC , 使∠BOC=135°,將一個含45°角的直角三角尺的一個頂點放在點O處,斜邊OM與直線AB重合,另外兩條直角邊都在直線AB的下方.

(1)將圖1中的三角尺繞著點O逆時針旋轉(zhuǎn)90°,如圖1所示,此時∠BOM=;在圖1中,OM是否平分∠CON?請說明理由;
(2)緊接著將圖2中的三角板繞點O逆時針繼續(xù)旋轉(zhuǎn)到圖3的位置所示,使得ON在∠AOC的內(nèi)部,請?zhí)骄浚骸?/span>AOM與∠CON之間的數(shù)量關(guān)系,并說明理由;
(3)將圖1中的三角板繞點O按每秒5°的速度沿逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為(直接寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案