【題目】已知直線l1∥l2 , 點A是l1上的動點,點B在l1上,點C、D在l2上,∠ABC,∠ADC的平分線交于點E(不與點B,D重合).
(1)若點A在點B的左側,∠ABC=80°,∠ADC=60°,過點E作EF∥l1 , 如圖①所示,求∠BED的度數(shù).

(2)若點A在點B的左側,∠ABC=α°,∠ADC=60°,如圖②所示,求∠BED的度數(shù);(直接寫出計算的結果)

(3)若點A在點B的右側,∠ABC=α°,∠ADC=60°,如圖③所示,求∠BED的度數(shù).

【答案】
(1)解:∵BE、DE分別是∠ABC,∠ADC的平分線,

∴∠ABE= ∠ABC= ×80°=40°,∠CDE= ∠ADC= ×60°=30°.

∵EF∥L1,

∴∠BEF=∠ABE=40°.

∵L1∥L2

∴EF∥L2

∴∠DEF=∠CDE=30°

∴∠BED=∠BEF+∠DEF=40°+30°=70°


(2)解:BE、DE分別是∠ABC,∠ADC的平分線,

∴∠ABE= ∠ABC= α°,∠CDE= ∠ADC= ×60°=30°.

∵EF∥L1,

∴∠BEF=∠ABE= α°.

∵L1∥L2,

∴EF∥L2,

∴∠DEF=∠CDE=30°

∴∠BED=∠BEF+∠DEF= α°+30°,即∠BED=( α+30)°


(3)解:過點E作EF∥L1,

∵BE,DE分別是∠ABC、∠ADC平分線,

∴∠ABE= ∠ABC= α°,∠CDE= ∠ADC= ×60°=30°.

∵EF∥L1,

∴∠BEF=(180﹣ α)°.

又∵L1∥L2

∴EF∥L2

∴∠DEF=∠CDE=30°

∴∠BED=∠BEF+∠DEF

=(180﹣ α+30)°

=(210﹣ α)°


【解析】(1)根據(jù)BE、DE分別是∠ABC,∠ADC的平分線,得出∠ABE= ∠ABC,∠CDE= ∠ADC,再由平行線的性質得出∠BEF=∠ABE,同理可得出∠DEF=∠CDE,再由∠BED=∠BEF+∠DEF即可得出結論;(2)過點E作EF∥AB,同(1)的證明過程完全相同;(3)過點E作EF∥L1 , 根據(jù)BE,DE分別是∠ABC、∠ADC平分線可知∠ABE= ∠ABC= α°,∠CDE= ∠ADC,再由EF∥L1可知∠BEF=(180﹣ α)°.根據(jù)L1∥L2可知EF∥L2 , 故∠DEF=∠CDE=30°,所以∠BED=∠BEF+∠DEF.
【考點精析】本題主要考查了平行線的性質的相關知識點,需要掌握兩直線平行,同位角相等;兩直線平行,內錯角相等;兩直線平行,同旁內角互補才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,在平面直角坐標系內,點A的坐標為(0,24 ),經(jīng)過原點的直線l1與經(jīng)過點A的直線l2相交于點B,點B坐標為(18,6).

(1)求直線l1,l2的表達式;

(2)點C為線段OB上一動點 (點C不與點O,B重合),作CDy軸交直線l2于點D,過點C,D分別向y軸作垂線,垂足分別為F,E,得到矩形CDEF.

設點C的縱坐標為a,求點D的坐標(用含a的代數(shù)式表示);

若矩形CDEF的面積為60,請直接寫出此時點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】按字母x的升冪排列:x2-2y2+3xy

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點A的坐標為(2,1),正比例函數(shù)y=kx的圖象與線段OA的夾角是45°,求這個正比例函數(shù)的表達式為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把多項式x3-2x2+x分解因式結果正確的是( 

A. x(x2-2x) B. x2(x-2) C. x(x+1)(x-1) D. x(x-1)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一組數(shù)據(jù)4,16,x,5的平均數(shù)為4,則這組數(shù)據(jù)的眾數(shù)為( 。

A. 6B. 5C. 4D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖直角坐標系中,矩形ABCD的邊BCx軸上,點B、D的坐標分別為B(1,0),D(3,3).

(1)點C的坐標

(2)若反比例函數(shù)的圖象經(jīng)過直線AC上的點E,且點E的坐標為(2,m),求m的值及反比例函數(shù)的解析式;

(3)若(2)中的反比例函數(shù)的圖象與CD相交于點F,連接EF,在直線AB上找一點P,使得,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:E∠AOB的平分線上一點,EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點F.

(1)求證:OECD的垂直平分線.

(2)∠AOB=60°,請你探究OEEF之間有什么數(shù)量關系?并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解決下列各小題(第①題4分,每②題5分,第③題6分,滿分15分)

①因式分解:

②解不等式組: ,并指出它的所有非負整數(shù)解.

③化簡: ,再從, , , 中選一個合適的數(shù)代入求值.

查看答案和解析>>

同步練習冊答案