【題目】如圖,在△ABC中,AB=AC,點(diǎn)D△ABC內(nèi)一點(diǎn),AD=BD,且AD⊥BD,連接CD.過點(diǎn)CCE⊥BCAD的延長線于點(diǎn) E,連接BE.過點(diǎn)DDF⊥CDBC于點(diǎn)F.

1)若BD=DE=,CE=,求BC的長;

(2)若BD=DE,求證:BF=CF.

【答案】(1)BC=2;(2)證明見解析.

【解析】試題分析:1)利用勾股定理求出BE的長,進(jìn)而再次利用勾股定理求出BC的長;
2)連接AF,首先利用ASA證明出△BDF≌△EDC得到,進(jìn)而得到∠ADF=BDC再次利用SAS證出△ADF≌△BDC,結(jié)合題干條件得到AFBC利用等腰三角形的性質(zhì)得到結(jié)論.

試題解析:(1)BDAD,點(diǎn)EAD的延長線上,

BCCE,

(2)連接AF,

CDBD,DFCD

∴∠BDF=CDE,

CEBC

∴∠DBC=CED,

在△BDF和△EDC中,

∴△BDF≌△EDC(ASA),

DF=CD,

∵∠ADB=CDF,

∴∠ADB+BDF=CDF+BDF

∴∠ADF=BDC,

在△ADF和△BDC中,

∴△ADF≌△BDC(SAS)

∴∠AFD=BCD,

AFBC

AB=AC,

BF=CF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC內(nèi)接于⊙O,AC是⊙O的直徑,D是的中點(diǎn).過點(diǎn)D作CB的垂線,分別交CB、CA延長線于點(diǎn)F、E.

(1)判斷直線EF與⊙O的位置關(guān)系,并說明理由;
(2)若CF=6,∠ACB=60°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系 中,直線 軸交于點(diǎn) ,直線軸交于點(diǎn) ,與 相交于點(diǎn)

1)求點(diǎn)的坐標(biāo);

2)在 軸上一點(diǎn) ,若,求點(diǎn)的坐標(biāo);

3)直線 上一點(diǎn),平面內(nèi)一點(diǎn) ,若以 、 為頂點(diǎn)的三角形與全等,求點(diǎn) 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以直線向上的方向?yàn)樾伦鴺?biāo)系軸的正方向,過點(diǎn)作一與新軸垂直的直線,垂足是點(diǎn),該直線向上的方向?yàn)樾?/span>軸的正方向,由此建立新的坐標(biāo)系.

(1)軸所在直線在坐標(biāo)系中的表達(dá)式是什么?

(2)點(diǎn)坐標(biāo)系中坐標(biāo)是,在坐標(biāo)系中的坐標(biāo)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把RtABC放在直角坐標(biāo)系內(nèi),其中∠CAB=90°,BC=5,點(diǎn)A,B的坐標(biāo)分別為(1,0),(4,0),將△ABC沿x軸向右平移,當(dāng)點(diǎn)C落在直線y=2x-6上時(shí),線段BC掃過的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著綠城南寧近幾年城市建設(shè)的快速發(fā)展,對(duì)花木的需求量逐年提高某園林專業(yè)戶計(jì)劃投資種植花卉及樹木,根據(jù)市場調(diào)查與預(yù)測,種植樹木的利潤與投資量成正比例關(guān)系,如圖1所示;種植花卉的利潤與投資量成二次函數(shù)關(guān)系,如圖2所示注:利潤與投資量的單位:萬元

(1)分別求出利潤關(guān)于投資量的函數(shù)關(guān)系式;

(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,他至少獲得多少利潤?他能獲取的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與直線交于兩點(diǎn),過軸交拋物線于點(diǎn),直線軸于點(diǎn)

、三點(diǎn)的坐標(biāo);

若點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),過軸交拋物線于點(diǎn),連接,當(dāng)時(shí),求的值;

如圖,連接,,設(shè)點(diǎn)的中點(diǎn),點(diǎn)是線段上任意一點(diǎn),將沿邊翻折得到,求當(dāng)為何值時(shí),重疊部分的面積是面積的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖.一次函數(shù)yx+1的圖象L1y軸于點(diǎn)A,一次函數(shù)y=﹣x+3的圖象L2x軸于點(diǎn)BL1L2交于點(diǎn)C

1)求點(diǎn)A與點(diǎn)B的坐標(biāo);

2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知一次函數(shù)的圖像與x軸交于點(diǎn),與軸交于點(diǎn)

1)求直線的解析式;

2)在坐標(biāo)系中能否找到點(diǎn),使得?如果能,求出滿足條件的點(diǎn)的坐標(biāo);如果不能,請(qǐng)說明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案