【題目】如圖,已知AB:BC:CD=2:3:4,E、F分別為AB、CD中點,且EF=15.求線段AD的長.

【答案】解:設(shè)AB=2x,BC=3x,CD=4x, ∵E、F分別是AB和CD的中點,
∴BE= AB=x,CF= CD=2x,
∵EF=15cm,
∴BE+BC+CF=15cm,
∴x+3x+2x=15,
解得:x=
∴AD=AB+BC+CD=2x+3x+4x=9x= cm
【解析】根據(jù)題意可設(shè)AB=2x,然后根據(jù)圖形列出方程即可求出AD的長度.
【考點精析】關(guān)于本題考查的兩點間的距離,需要了解同軸兩點求距離,大減小數(shù)就為之.與軸等距兩個點,間距求法亦如此.平面任意兩個點,橫縱標差先求值.差方相加開平方,距離公式要牢記才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠BAD,且AC=BC,AB=2AD.

(1)求∠ADC的度數(shù);
(2)若AB=10cm,CD=12cm,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為更新果樹品種,某果園計劃新購進A、B兩個品種的果樹苗栽植培育,若計劃購進這兩種果樹苗共45棵,其中A種苗的單價為7元/棵,購買B種苗所需費用y(元)與購買數(shù)量x(棵)之間存在如圖所示的函數(shù)關(guān)系.

(1)求y與x的函數(shù)關(guān)系式;

(2)若在購買計劃中,B種苗的數(shù)量不超過35棵,但不少于A種苗的數(shù)量,請設(shè)計購買方案,使總費用最低,并求出最低費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】利用公式計算:20152﹣2014×2016.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形OABC中,OA=8,OC=4,沿對角線OB折疊后,點A與點D重合,OD與BC交于點E,則點D的坐標是(

A.(4,8) B.(5,8) C.( D.(,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A,B,C是直線l上三點,線段AB=6cm,且AB= AC,則BC=(
A.6cm
B.12cm
C.18cm
D.6cm或18cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若點A到x軸的距離為3,到y(tǒng)軸的距離為4,且點A在第二象限,則點A的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形BCDE的各邊分別平行于x軸或y軸,物體甲和物體乙分別由點A(2,0)同時出發(fā),沿長方形BCDE的邊作環(huán)繞運動.物體甲按逆時針方向以1個單位/秒勻速運動,物體乙按順時針方向以2個單位/秒勻速運動,則兩個物體運動后的第2017次相遇地點的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,矩形OABC中,A(10,0),C(0,4),D為OA的中點,P為BC邊上一點.若POD為等腰三角形,則所有滿足條件的點P的坐標為

查看答案和解析>>

同步練習冊答案