【題目】如圖,在中,,于,平分交于,交于,,,下列結(jié)論:①;②;③;④,其中正確的結(jié)論有____________. (填序號(hào))
【答案】①②③④
【解析】
只要證明∠AFE=∠AEF,四邊形FGCH是平行四邊形,△FBA≌△FBH即可解決問題.
∵∠FBD=∠ABF,∠FBD+∠BFD=90°,∠ABF+∠AEB=90°
∴∠BFD=∠AEB
∴∠AFE=∠AEB
∴AF=AE,故①正確
∵FG∥BC,FH∥AC
∴四邊形FGCH是平行四邊形
∴FH=CG,FG=CH,∠FHD=∠C
∵∠BAD+∠DAC=90°,∠DAC+∠C=90°
∴∠BAF=∠BHF
∵BF=BF,∠FBA=∠FBH
∴△FBA≌△FBH(AAS)
∴FA=FH,AB=BH,故②正確
∵AF=AE,FH=CG
∴AE=CG
∴AG=CE,故③正確
∵BC=BH+HC,BH=BA,CH=FG
∴BC=AB+FG,故④正確
故答案為:①②③④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列一段文字:在直角坐標(biāo)系中,已知兩點(diǎn)的坐標(biāo)是M(x1,y1),N(x2,y2)),M,N兩點(diǎn)之間的距離可以用公式MN=計(jì)算.解答下列問題:
(1)若點(diǎn)P(2,4),Q(﹣3,﹣8),求P,Q兩點(diǎn)間的距離;
(2)若點(diǎn)A(1,2),B(4,﹣2),點(diǎn)O是坐標(biāo)原點(diǎn),判斷△AOB是什么三角形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,連接,以對(duì)角線為邊按逆時(shí)針方向作矩形,使矩形矩形;再連接,以對(duì)角線為邊,按逆時(shí)針方向作矩形,使矩形矩形, ..按照此規(guī)律作下去,若矩形的面積記作,矩形的面積記作,矩形的面積記作, ... 則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線(a≠0)經(jīng)過A(﹣1,0)、B(3,0)、C(0,﹣3)三點(diǎn),直線l是拋物線的對(duì)稱軸.
(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)P到點(diǎn)A、點(diǎn)B的距離之和最短時(shí),求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M也是直線l上的動(dòng)點(diǎn),且△MAC為等腰三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教材中這樣寫道“我們把多項(xiàng)式及這樣的式子叫做完全平方式”如果一個(gè)多項(xiàng)式不是完全平方式,我們常做如下變形:先添加一個(gè)適當(dāng)?shù)捻?xiàng),使式子中出現(xiàn)完全平方式,再減去這個(gè)項(xiàng),使整個(gè)式子的值不變,這種方法叫做配方法配方法是一種重要的解決數(shù)學(xué)問題的數(shù)學(xué)方法,不僅可以將一個(gè)看似不能分解的多項(xiàng)式分解因式,還能解決些與非負(fù)數(shù)有關(guān)的問題或求式子的最大值、最小值等.
例1.分解因式解:
解:
例2.求式子的最小值,
解:,
可知當(dāng)時(shí),有最小值,最小值是,
根據(jù)以上材料用配方法解決下列問題:
在實(shí)數(shù)范圍內(nèi)分解因式:;
當(dāng)為何值時(shí),多項(xiàng)式有最小值?并求出這個(gè)最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子里有5個(gè)小球,分別標(biāo)有數(shù)字﹣3,﹣2,﹣1,﹣,﹣,這些小球除所標(biāo)的數(shù)不同外其余都相同,先從盒子隨機(jī)摸出1個(gè)球,記下所標(biāo)的數(shù),再從剩下的球中隨機(jī)摸出1個(gè)球,記下所標(biāo)的數(shù).
(1)用畫樹狀圖或列表的方法求兩次摸出的球所標(biāo)的數(shù)之積不大于1的概率.
(2)若以第一次摸出球上的數(shù)字為橫坐標(biāo),第二次摸出球上的數(shù)字為縱坐標(biāo)確定一點(diǎn),直接寫出該點(diǎn)在雙曲線y=上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】折紙不僅可以幫助我們進(jìn)行證明,還可以幫助我們進(jìn)行計(jì)算.小明取了一張正方形紙片,按照如圖所示的方法折疊(如圖①②③):
重新展開后得到如圖所示的正方形ABCD(如圖④),BD、BE、EF為前面折疊的折痕.小亮觀察之后發(fā)現(xiàn)利用這個(gè)圖形可以求出45°、22.5°等角的三角函數(shù)值.請(qǐng)你直接寫出tan67.5°=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn),分別延長(zhǎng)OD到點(diǎn)G,OC到點(diǎn)E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角(0°<α<360°)得到正方形OE′F′G′,如圖2.
①在旋轉(zhuǎn)過程中,當(dāng)∠OAG′是直角時(shí),求α的度數(shù);
②若正方形ABCD的邊長(zhǎng)為1,在旋轉(zhuǎn)過程中,求AF′長(zhǎng)的最大值和此時(shí)α的度數(shù),直接寫出結(jié)果不必說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙M交x軸于B、C兩點(diǎn),交y軸于A,點(diǎn)M的縱坐標(biāo)為2.B(﹣3,O),C(,O).
(1)求⊙M的半徑;
(2)若CE⊥AB于H,交y軸于F,求證:EH=FH.
(3)在(2)的條件下求AF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com