【題目】如圖,在中,,平分,交,,下列結(jié)論:①;②;③;④,其中正確的結(jié)論有____________. (填序號(hào))

【答案】①②③④

【解析】

只要證明∠AFE=∠AEF,四邊形FGCH是平行四邊形,△FBA≌△FBH即可解決問題.

∵∠FBD=∠ABF,∠FBD+∠BFD90°,∠ABF+∠AEB90°

∴∠BFD=∠AEB

∴∠AFE=∠AEB

AFAE,故①正確

FGBCFHAC

∴四邊形FGCH是平行四邊形

FHCG,FGCH,∠FHD=∠C

∵∠BAD+∠DAC90°,∠DAC+∠C90°

∴∠BAF=∠BHF

BFBF,∠FBA=∠FBH

∴△FBA≌△FBHAAS

FAFH,ABBH,故②正確

AFAEFHCG

AECG

AGCE,故③正確

BCBHHC,BHBA,CHFG

BCABFG,故④正確

故答案為:①②③④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列一段文字:在直角坐標(biāo)系中,已知兩點(diǎn)的坐標(biāo)是Mx1,y1),Nx2,y2)),MN兩點(diǎn)之間的距離可以用公式MN計(jì)算.解答下列問題:

1)若點(diǎn)P2,4),Q(﹣3,﹣8),求P,Q兩點(diǎn)間的距離;

2)若點(diǎn)A1,2),B4,﹣2),點(diǎn)O是坐標(biāo)原點(diǎn),判斷△AOB是什么三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,連接,以對(duì)角線為邊按逆時(shí)針方向作矩形,使矩形矩形;再連接,以對(duì)角線為邊,按逆時(shí)針方向作矩形,使矩形矩形, ..按照此規(guī)律作下去,若矩形的面積記作,矩形的面積記作,矩形的面積記作, ... 的值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線a≠0)經(jīng)過A﹣10)、B3,0)、C0,﹣3)三點(diǎn),直線l是拋物線的對(duì)稱軸.

1)求拋物線的函數(shù)關(guān)系式;

2)設(shè)點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)P到點(diǎn)A、點(diǎn)B的距離之和最短時(shí),求點(diǎn)P的坐標(biāo);

3)點(diǎn)M也是直線l上的動(dòng)點(diǎn),且△MAC為等腰三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教材中這樣寫道我們把多項(xiàng)式這樣的式子叫做完全平方式如果一個(gè)多項(xiàng)式不是完全平方式,我們常做如下變形:先添加一個(gè)適當(dāng)?shù)捻?xiàng),使式子中出現(xiàn)完全平方式,再減去這個(gè)項(xiàng),使整個(gè)式子的值不變,這種方法叫做配方法配方法是一種重要的解決數(shù)學(xué)問題的數(shù)學(xué)方法,不僅可以將一個(gè)看似不能分解的多項(xiàng)式分解因式,還能解決些與非負(fù)數(shù)有關(guān)的問題或求式子的最大值、最小值等.

1.分解因式解:

解:

2.求式子的最小值,

解:

可知當(dāng)時(shí),有最小值,最小值是,

根據(jù)以上材料用配方法解決下列問題:

在實(shí)數(shù)范圍內(nèi)分解因式:;

當(dāng)為何值時(shí),多項(xiàng)式有最小值?并求出這個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的盒子里有5個(gè)小球,分別標(biāo)有數(shù)字﹣3,﹣2,﹣1,﹣,﹣,這些小球除所標(biāo)的數(shù)不同外其余都相同,先從盒子隨機(jī)摸出1個(gè)球,記下所標(biāo)的數(shù),再從剩下的球中隨機(jī)摸出1個(gè)球,記下所標(biāo)的數(shù).

(1)用畫樹狀圖或列表的方法求兩次摸出的球所標(biāo)的數(shù)之積不大于1的概率.

(2)若以第一次摸出球上的數(shù)字為橫坐標(biāo),第二次摸出球上的數(shù)字為縱坐標(biāo)確定一點(diǎn),直接寫出該點(diǎn)在雙曲線y=上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】折紙不僅可以幫助我們進(jìn)行證明,還可以幫助我們進(jìn)行計(jì)算.小明取了一張正方形紙片,按照如圖所示的方法折疊(如圖①②③):

重新展開后得到如圖所示的正方形ABCD(如圖④),BD、BE、EF為前面折疊的折痕.小亮觀察之后發(fā)現(xiàn)利用這個(gè)圖形可以求出45°、22.5°等角的三角函數(shù)值.請(qǐng)你直接寫出tan67.5°=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12分)如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn),分別延長(zhǎng)OD到點(diǎn)G,OC到點(diǎn)E,使OG=2ODOE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE

1)求證:DE⊥AG;

2)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角(α360°)得到正方形OE′F′G′,如圖2

在旋轉(zhuǎn)過程中,當(dāng)∠OAG′是直角時(shí),求α的度數(shù);

若正方形ABCD的邊長(zhǎng)為1,在旋轉(zhuǎn)過程中,求AF′長(zhǎng)的最大值和此時(shí)α的度數(shù),直接寫出結(jié)果不必說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙M交x軸于B、C兩點(diǎn),交y軸于A,點(diǎn)M的縱坐標(biāo)為2.B(﹣3,O),C(,O).

(1)求⊙M的半徑;

(2)若CE⊥AB于H,交y軸于F,求證:EH=FH.

(3)在(2)的條件下求AF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案