圖(1)中的梯形符合_______條件時,可以經(jīng)過旋轉和翻折形成圖案(2).
上底與腰長相等且底角是60°的等腰梯形
從圖得到,梯形的上底與兩腰相等,上底角為360°÷3=120°,
∴下底角=60°,
∴梯形符合底角為60°且上底與兩腰相等的等腰梯形條件時,
可以經(jīng)過旋轉和翻折形成圖案(2).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖:已知△ABC中,D是AB上一點,添加一個條件     ,可使△ABC∽△ACD.
   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,∠C=90º,AC=6cm,BC=8cm,D、E分別是AC、AB
的中點,連接DE.點P從點D出發(fā),沿DE方向勻速運動,速度為1cm/s;同時,點Q從點B出發(fā),沿
BA方向勻速運動,速度為2cm/s,當點P停止運動時,點Q也停止運動.連接PQ,設運動時間為t(0<t
<4)s.解答下列問題:

(1)當t為何值時,PQ⊥AB?
(2)當點Q在B、E之間運動時,設五邊形PQBCD的面積為ycm2,求y與t之間的函數(shù)關系式;
(3)在(2)的情況下,是否存在某一時刻t,使得PQ分四邊形BCDE所成的兩部分的面積之比為
=1∶29?若存在,求出此時t的值以及點E到PQ的距離h;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知P是線段AB的黃金分割點,且PA>PB.若S1表示以PA為一邊的正方形的面積,S2表示長是AB、寬是PB的矩形的面積,則S1    ▲   S2.(填“>”“="”“" <”)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,已知△ABC和△DEF的頂點坐標分別為A(1,0)、B(3,0)、C(2,1)、D(4,3)、E(6,5)、F(4,7)。按下列要求畫圖:以點O為位似中心,將△ABC向y軸左側按比例尺2:1放大得△ABC的位似圖形△A1B1C1,并解決下列問題:
(1)頂點A1的坐標為    ▲   ,B1的坐標為    ▲   ,C1的坐標為    ▲   ;
(2)請你利用旋轉、平移兩種變換,使△A1B1C1通過變換后得到△A2B2C2,且△A2B2C2恰與△DEF拼接成一個平行四邊形(非正方形)。寫出符合要求的變換過程。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,是位似圖形,且頂點都在格點上,則位似中心的坐標是   

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,將一副直角三角板(含45°角的直角三角板ABC及含30°角的直角三角板DCB)按圖示方式疊放,斜邊交點為O,則△AOB與△COD 的面積之比等于     

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交AC于點E,交BC于點D,連結BE、AD交于點P. 求證:
(1)D是BC的中點;
(2)△BEC ∽△ADC;
(3)AB× CE=2DP×AD.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

九年級上冊的教材第118頁有這樣一道習題:
“在一塊三角形余料ABC中,它的邊BC=120mm,高線AD=80mm.要把它加工成正方形零件(如圖),使正方形的一邊在BC上,其余兩個頂點分別在AB,AC上.問加工成的正方形零件的邊長為多少mm?”
(1)請你解答上題;
(2)若將上題圖中的正方形PQMN改為矩形,其余條件不變,求矩形PQMN的面積S的最大值;
(3)我們把上面習題中的正方形PQMN叫做“BC邊上的△ABC的內(nèi)接正方形”,若在習題的條件下,又知AB=150mm,AC=100mm,請分別寫出AB邊上的△ABC的內(nèi)接正方形的邊長和AC邊上的△ABC的內(nèi)接正方形的邊長(不必寫出過程,只要直接寫出答案即可,結果精確到1mm);
(4)結合第(1)、(3)題,若三角形的三邊長分別為a,b,c,各邊上的高分別為ha,hb,hc,要使a邊上的三角形內(nèi)接正方形的面積最大,請寫出a與ha必須滿足的條件(不必寫出過程).                                             

查看答案和解析>>

同步練習冊答案