【題目】如圖,在矩形ABCD中,E,F分別是邊AB,CD上的點,AE=CF,連結(jié)EFBF,EF與對角線AC交于點O,且BE=BF,∠BEF=2∠BAC.
(1)求證:OE=OF;(2)若BC=3,求AB的長
【答案】(1)見解析;(2).
【解析】
(1)根據(jù)矩形的對邊平行可得AB∥CD,再根據(jù)兩直線平行,內(nèi)錯角相等求出∠BAC=∠FCO,然后利用“角角邊”證明△AOE和△COF全等,再根據(jù)全等三角形的即可得證;
(2)連接OB,根據(jù)等腰三角形三線合一的性質(zhì)可得BO⊥EF,再根據(jù)矩形的性質(zhì)可得OA=OB,根據(jù)等邊對等角的性質(zhì)可得∠BAC=∠ABO,再根據(jù)三角形的內(nèi)角和定理列式求出∠ABO=30°,即∠BAC=30°,根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出AC,再利用勾股定理列式計算即可求出AB.
(1)證明:在矩形ABCD中,AB∥CD,
∴∠BAC=∠FCO,
在△AOE和△COF中,
,
∴△AOE≌△COF(AAS),
∴OE=OF;
(2)解:如圖,連接OB,
∵BE=BF,OE=OF,
∴BO⊥EF,
∴在Rt△BEO中,∠BEF+∠ABO=90°,
由直角三角形斜邊上的中線等于斜邊上的一半可知:OA=OB=OC,
∴∠BAC=∠ABO,
又∵∠BEF=2∠BAC,
即2∠BAC+∠BAC=90°,
解得∠BAC=30°,
∵BC=2,
∴AC=2BC=4,
∴AB=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示.線段AB、DC分別表示甲、乙兩座建筑物的高.AB⊥BC,DC⊥BC,兩建筑物間距離BC=30米,若甲建筑物高AB=28米,在A點測得D點的仰角α=45°,則乙建筑物高DC=______米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要在木里縣某林場東西方向的兩地之間修一條公路MN,已知點C周圍200 m范圍內(nèi)為原始森林保護區(qū),在MN上的點A處測得C在A的北偏東45°方向上,從A向東走600 m到達B處,測得C在點B的北偏西60°方向上.
(1)MN是否穿過原始森林保護區(qū)?為什么?(參考數(shù)據(jù): ≈1.732)
(2)若修路工程順利進行,要使修路工程比原計劃提前5天完成,需將原定的工作效率提高25%,則原計劃完成這項工程需要多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①位似圖形都相似;②位似圖形都是平移后再放大(或縮小)得到;③直角三角形斜邊上的中線與斜邊的比為1:2;④兩個相似多邊形的面積比為4:9,則周長的比為16:81中,正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖、在平行四邊形ABCD中,E、F是對角線BD上的兩點,則下列條件中不能判定四邊形AECF是平行四邊形的是( )
A.BD=DFB.AFBD,
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD、CEFG是正方形,E在CD上,直線BE、DG交于H,且HEHB=4-2,BD、AF交于M,當(dāng)E在線段CD(不與C、D重合)上運動時,下列四個結(jié)論:①BE⊥GD;②AF、GD所夾的銳角為45°;③GD=AM;④若BE平分∠DBC,則正方形ABCD的面積為4,其中結(jié)論正確的是______(填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于點A(-1,0),點B(-3,0),且OB=OC,
(1)求拋物線的解析式;
(2)點P在拋物線上,且∠POB=∠ACB,求點P的坐標(biāo);
(3)拋物線上兩點M,N,點M的橫坐標(biāo)為m,點N的橫坐標(biāo)為m+4.點D是拋物線上M,N之間的動點,過點D作y軸的平行線交MN于點E.
①求DE的最大值.
②點D關(guān)于點E的對稱點為F.當(dāng)m為何值時,四邊形MDNF為矩形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某初級中學(xué)數(shù)學(xué)興趣小組為了了解本校學(xué)生的年齡情況,隨機調(diào)查了該校部分學(xué)生的年齡,整理數(shù)據(jù)并繪制如下不完整的統(tǒng)計圖.
依據(jù)以上信息解答以下問題:
(1)求樣本容量;
(2)直接寫出樣本容量的平均數(shù),眾數(shù)和中位數(shù);
(3)若該校一共有1800名學(xué)生,估計該校年齡在15歲及以上的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解不等式組請結(jié)合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得____________________;
(Ⅱ)解不等式②,得_______________________;
(III)把不等式①和②的解集在數(shù)軸上表示出來:
(IV)原不等式組的解集為________________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com