【題目】如圖1,在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E。
(1)①求證圖1中△ADC≌△CEB;②證明DE=AD+BE;
(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時,請說明DE=AD-BE的理由;
(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時,試問DE、AD、BE又具有怎樣的等量關(guān)系?請直接寫出這個等量關(guān)系(不必說明理由)。
【答案】(1)①詳見解析;②詳見解析;(2)DE =AD-BE,詳見解析;(3)DE=BE
【解析】
(1) 平角減去直角之后剩下的兩個銳角互余是解題關(guān)鍵.證明△ADC≌△CEB即可;
(2) 直線分割直角所得的兩個銳角互余,證明△ADC≌△CEB;
(3) 此小題和(2)解法一致.
(1)①如圖1,在△ABC中,∠ACB=90°,,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E,∠ADC=90°,∠BEC=90°,;因?yàn)?/span>=90°,所以,又因?yàn)?/span>AC=BC,所以△ADC≌△CEB,
②由①的結(jié)論知△ADC≌△CEB,所以CD=BE,AD=CE,所以
DE=CE+CD=AD+BE
(2)∵AD⊥MN于D,BE⊥MN于E
∴∠ADC=∠BEC=∠ACB=90°,
∴∠CAD+∠ACD=90°,∠ACD+∠BCE=90°
∴∠CAD=∠BCE
在△ADC和△CEB中
∴△ADC≌△CEB(AAS)
∴CE=AD,CD=BE
∴DE=CE-CD=AD-BE
(3)當(dāng)MN旋轉(zhuǎn)到圖3的位置時,AD、DE、根據(jù)旋轉(zhuǎn)的特征,結(jié)合(1)、(2)DE、AD、BE所滿足的等量關(guān)系是DE=BE – AD(或AD=BE-DE,BE=AD+DE等)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將掛好彩旗的旗桿垂直插在操場上,旗桿從旗頂?shù)降孛娴母叨葹?/span>320cm,在無風(fēng)的天氣里,彩旗自然下垂,如圖所示,
(1)求彩旗下垂時最低處離地面的最小高度h.彩旗完全展平時的尺寸如圖的長方形(單位:cm)
(2)商店彩旗的標(biāo)價為每面40元,旗桿的標(biāo)價為每根20元,學(xué)校計劃購買彩旗60面,旗桿50根,由于數(shù)量較多商店決定給予學(xué)校優(yōu)惠,其中彩旗每面優(yōu)惠10%,旗桿每根優(yōu)惠a%,這樣,學(xué)校彩旗又多購買了2a%,旗桿的數(shù)量不變,這樣總共花費(fèi)3542元,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把四張形狀大小完全相同的小長方形卡片(如圖1)不重疊地放在一個底面為長方形(長為厘米,寬為厘米))的盒了底部(如圖2),盒子底面未被卡片覆蓋的部分用陰影表示,則圖2中兩塊陰影部分的周長和是____________厘米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某兒童游樂場為了有穩(wěn)定的客源,決定開辦會員業(yè)務(wù),每張會員證30元,只限本人使用,有效期為一年,憑證入場每人次收費(fèi)2元,不憑證入場每人次收費(fèi)3元.
(1)一年內(nèi)在這個游樂場玩多少次,辦理會員證和不辦理會員證花錢一樣多?
(2)2019年,小明計劃每月到游樂場玩4次,請你為他推薦一種經(jīng)濟(jì)省錢的方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲、乙兩動點(diǎn)分別從正方形 ABCD 的頂點(diǎn) A、C 同時沿正方形的邊開始移動,甲點(diǎn)依順時針方向環(huán)行,乙點(diǎn)依逆時針方向環(huán)行.若甲的速度是乙的速度的 3 倍,則它們第 2018 次相遇在邊( )上.
A. CDB. ADC. ABD. BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,BC=3,D為AC延長線上一點(diǎn),AC=3CD,過點(diǎn)D作DH∥AB,交BC的延長線于點(diǎn)H.
(1)求BD·cos∠HBD的值;
(2)若∠CBD=∠A,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(7分)現(xiàn)有一個六面分別標(biāo)有數(shù)字1,2,3,4,5,6且質(zhì)地均勻的正方形骰子,另有三張正面分別標(biāo)有數(shù)字1,2,3的卡片(卡片除數(shù)字外,其他都相同),先由小明投骰子一次,記下骰子向上一面出現(xiàn)的數(shù)字,然后由小王從三張背面朝上放置在桌面上的卡片中隨機(jī)抽取一張,記下卡片上的數(shù)字.
(1)請用列表或畫樹形圖(樹狀圖)的方法,求出骰子向上一面出現(xiàn)的數(shù)字與卡片上的數(shù)字之積為6的概率;
(2)小明和小王做游戲,約定游戲規(guī)則如下:若骰子向上一面出現(xiàn)的數(shù)字與卡片上的數(shù)字之積大于7,則小明贏;若骰子向上一面出現(xiàn)的數(shù)字與卡片上的數(shù)字之積小于7,則小王贏,問小明和小王誰贏的可能性更大?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在平面直角坐標(biāo)系中,已知點(diǎn)A(m,0),B(n,0),且m,n滿足(m+1)2+=0,將線段AB向右平移1個單位長度,再向上平移2個單位長度,得到線段CD,其中點(diǎn)C與點(diǎn)A對應(yīng),點(diǎn)D與點(diǎn)B對應(yīng),連接AC,BD.
(1)求點(diǎn)A、B、C、D的坐標(biāo);
(2)在x軸上是否存在點(diǎn)P,使三角形PBC的面積等于平行四邊形ABDC的面積?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)如圖(2),點(diǎn)E在y軸的負(fù)半軸上,且∠BAE=∠DCB.求證:AE∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知A(-1,4),B(4,2),C(-1,0)三點(diǎn).
(1)點(diǎn)A關(guān)于y軸的對稱點(diǎn)A′ 的坐標(biāo)為 ,點(diǎn)B關(guān)于x軸的對稱點(diǎn)B′ 的坐標(biāo)為 ,線段AC的垂直平分線與y軸的交點(diǎn)D的坐標(biāo)為 ;
(2)求(1)中的△A′ B′ D的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com