(2006,宜昌)如圖,⊙O的直徑BC=4,過點(diǎn)C作⊙O的切線m,D是直線m上一點(diǎn),且DC=2,A是線段BO上一動點(diǎn),連結(jié)AD交⊙O于點(diǎn)G,過點(diǎn)AAD的垂線交直線m于點(diǎn)F,交⊙O于點(diǎn)H,連結(jié)GHBC于點(diǎn)E

(1)當(dāng)ABO的中點(diǎn)時,求AF的長;

(2)若∠AGH=∠AFD,求△AGH的面積.

答案:略
解析:

解:(1)BC=4,AOB的中點(diǎn),∴AC=3

又∵DC為⊙O的切線,

∴∠ACD=ACF=90°.

ADAF

∴∠ADC、∠CAF都與∠DAC互余,

∴∠ADC=FAC,

∴△ACD∽△FCA

CDAC=CAFC

解得

(2)∵∠AGH=AFD,∠DAF=HAG=90°,

∴△AGH∽△AFD,

∴∠AGH=F=CAG,∠AHG=D=CAF

AE=CE=HE(AERtAGH斜邊GH上的中線)

根據(jù)垂徑定理推論:GHBC,

∴可知GH是⊙O的直徑或GH是垂直于直徑的弦.

①如圖(1),如果GH是直徑,此時A、B兩點(diǎn)重合,GH=4,而DF=10,∴△AGH與△AFD的相似比為25,

∴△AGH與△AFD的面積比為425

而△AFD面積為,

∴△AGH面積為(3.2)

②如圖(2),如果GH不是直徑,則GHBC,

AC垂直平分GHAG=AH,∴GHDF

而∠GAH=90°,∴∠AGH=45°,

∴∠D=AGH=45°.

RtACD中,∠DAC=45°,∴AC=DC=2,而OC=2

AO兩點(diǎn)重合,那么AG=AH=2

∴△AGH面積為


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2006•宜昌)如圖,點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)A(n,0)是x軸上一動點(diǎn)(n<0).以AO為一邊作矩形AOBC,點(diǎn)C在第二象限,且OB=2OA.矩形AOBC繞點(diǎn)A逆時針旋轉(zhuǎn)90°得矩形AGDE.過點(diǎn)A的直線y=kx+m交y軸于點(diǎn)F,F(xiàn)B=FA.拋物線y=ax2+bx+c過點(diǎn)E、F、G且和直線AF交于點(diǎn)H,過點(diǎn)H作HM⊥x軸,垂足為點(diǎn)M.
(1)求k的值;
(2)點(diǎn)A位置改變時,△AMH的面積和矩形AOBC的面積的比值是否改變?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年天津市中考數(shù)學(xué)模擬試卷(3)(解析版) 題型:解答題

(2006•宜昌)如圖,點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)A(n,0)是x軸上一動點(diǎn)(n<0).以AO為一邊作矩形AOBC,點(diǎn)C在第二象限,且OB=2OA.矩形AOBC繞點(diǎn)A逆時針旋轉(zhuǎn)90°得矩形AGDE.過點(diǎn)A的直線y=kx+m交y軸于點(diǎn)F,F(xiàn)B=FA.拋物線y=ax2+bx+c過點(diǎn)E、F、G且和直線AF交于點(diǎn)H,過點(diǎn)H作HM⊥x軸,垂足為點(diǎn)M.
(1)求k的值;
(2)點(diǎn)A位置改變時,△AMH的面積和矩形AOBC的面積的比值是否改變?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年湖北省宜昌市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•宜昌)如圖,點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)A(n,0)是x軸上一動點(diǎn)(n<0).以AO為一邊作矩形AOBC,點(diǎn)C在第二象限,且OB=2OA.矩形AOBC繞點(diǎn)A逆時針旋轉(zhuǎn)90°得矩形AGDE.過點(diǎn)A的直線y=kx+m交y軸于點(diǎn)F,F(xiàn)B=FA.拋物線y=ax2+bx+c過點(diǎn)E、F、G且和直線AF交于點(diǎn)H,過點(diǎn)H作HM⊥x軸,垂足為點(diǎn)M.
(1)求k的值;
(2)點(diǎn)A位置改變時,△AMH的面積和矩形AOBC的面積的比值是否改變?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年湖北省宜昌市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•宜昌)如圖,點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)A(n,0)是x軸上一動點(diǎn)(n<0).以AO為一邊作矩形AOBC,點(diǎn)C在第二象限,且OB=2OA.矩形AOBC繞點(diǎn)A逆時針旋轉(zhuǎn)90°得矩形AGDE.過點(diǎn)A的直線y=kx+m交y軸于點(diǎn)F,F(xiàn)B=FA.拋物線y=ax2+bx+c過點(diǎn)E、F、G且和直線AF交于點(diǎn)H,過點(diǎn)H作HM⊥x軸,垂足為點(diǎn)M.
(1)求k的值;
(2)點(diǎn)A位置改變時,△AMH的面積和矩形AOBC的面積的比值是否改變?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年湖北省宜昌市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•宜昌)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD.
(1)利用尺規(guī)作底邊AD的中點(diǎn)E.(保留作圖痕跡,不寫作法和證明)
(2)連接EB、EC,求證:∠ABE=∠DCE.

查看答案和解析>>

同步練習(xí)冊答案