【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b與反比例函數(shù)y= (m≠0)的圖象交于點(diǎn)A(3,1),且過點(diǎn)B(0,﹣2).

(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)如果點(diǎn)P是x軸上一點(diǎn),且△ABP的面積是3,求點(diǎn)P的坐標(biāo).

【答案】
(1)解:∵反比例函數(shù)y= (m≠0)的圖象過點(diǎn)A(3,1),

∴3=

∴m=3.

∴反比例函數(shù)的表達(dá)式為y=

∵一次函數(shù)y=kx+b的圖象過點(diǎn)A(3,1)和B(0,﹣2).

解得: ,

∴一次函數(shù)的表達(dá)式為y=x﹣2;


(2)解:令y=0,∴x﹣2=0,x=2,

∴一次函數(shù)y=x﹣2的圖象與x軸的交點(diǎn)C的坐標(biāo)為(2,0).

∵SABP=3,

PC×1+ PC×2=3.

∴PC=2,

∴點(diǎn)P的坐標(biāo)為(0,0)、(4,0).


【解析】(1)由反比例函數(shù)的圖象過點(diǎn)A(3,1),求出反比例函數(shù)的表達(dá)式,由一次函數(shù)y=kx+b的圖象過點(diǎn)A(3,1)和B(0,﹣2),用待定系數(shù)法求出一次函數(shù)的表達(dá)式;(2)由一次函數(shù)y=x﹣2的圖象與x軸的交點(diǎn)C的坐標(biāo)為(2,0),由SABP的值,求出PC的值,得到點(diǎn)P的坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,正△AOB的邊長為2,設(shè)直線x=t(0≤t≤2)截這個(gè)三角形所得位于此直線左方的圖形的面積為y,則y關(guān)于t的函數(shù)圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格中每個(gè)小正方形邊長為1,△ABC的頂點(diǎn)都在格點(diǎn)(網(wǎng)格線的交點(diǎn))上.將△ABC向左平移2格,再向上平移3格,得到△ABC′.

(1)請(qǐng)?jiān)趫D中畫出平移后的△ABC′;

(2)畫出平移后的△ABC′的中線BD′;

(3)若連接BB′,CC′,則這兩條線段的關(guān)系是_______

(4)ABC的面積為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把任意一個(gè)各個(gè)數(shù)位上的數(shù)字均不為0的多位自然數(shù)稱為完美數(shù),若將一個(gè)三位完美數(shù)的各數(shù)位上的數(shù)字兩兩組合,形成六個(gè)新的兩位數(shù),我們將這六個(gè)兩位相加的和,叫做該三位完美數(shù)完美雙和,然后用所得的完美雙和除以18,得到的結(jié)果記為,例如“271”是一個(gè)三位完美數(shù),六個(gè)新數(shù)為27,2172,7112,則:

1)填空:______

2)證明:任意一個(gè)三位完美數(shù)完美雙和與該三位完美數(shù)各數(shù)位上數(shù)字之差能被21除;

3)已知一個(gè)三位完美數(shù)其中x,均為整數(shù),滿足百位數(shù)字與個(gè)位數(shù)字之和等于十位數(shù)字的2倍加1,求出

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EF∥AD,∠1 =∠2,∠BAC = 75°將求∠AGD的過程填寫完整

解:∵EF∥AD

∴ ∠2 = ( 

∵ ∠1 = ∠2

∴ ∠1 = ∠3。(      

∴AB∥ 。(     

∴∠BAC + = 180°。(   

∵∠BAC=75°∴∠AGD =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AC∥BD,要使△ABC≌△BAD需再補(bǔ)充一個(gè)條件,下列條件中,不能選擇的是( )

A. BCAD B. AC=BD C. BC=AD D. C=D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D在BC延長線上,連接AD,過B作BE⊥AD,垂足為E,交AC于點(diǎn)F,連接CE.

(1)求證:CF=CD;
(2)求證:DADE=DBDC;
(3)探究線段AE,BE,CE之間滿足的等量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,關(guān)于此二次函數(shù)有以下四個(gè)結(jié)論:①a<0;②c>0;③b2﹣4ac>0;④ab>0,其中正確的有( )個(gè).

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)其中滿足:

1

2)在坐標(biāo)平面內(nèi),將△ABC平移,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)D,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)F,若平移后E、F兩點(diǎn)都在坐標(biāo)軸上,請(qǐng)直接寫出點(diǎn)E的坐標(biāo);

3)若在△ABC內(nèi)部的軸上存在一點(diǎn)P,在(2)的平移下,點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)Q,使得△APQ的面積為10,則點(diǎn)P的坐標(biāo)為_________

查看答案和解析>>

同步練習(xí)冊(cè)答案