【題目】如圖,△ABC中, ∠BAC=∠ADB,BE平分∠ABC交AD于點(diǎn)E,H為BC上一點(diǎn),且BH=BA交AC于點(diǎn)F,連接FH.
(1)求證:AE=FH;
(2)作EG//BC交AC于點(diǎn)G若AG=5,AC=8,求FG的長(zhǎng).
【答案】
(1)解:∵BE平分∠ABC
∴∠ABF=∠CBF又 ∠BAC=∠ADB
∴∠AFE=∠EDB=∠AEF
∴AE=AF
在△ABF和△ABF中
所以△ABF≌△ABF
AF=FH
∴AE=FH
(2)解:由(1)得△ABF≌△ABF
∠AFE=∠EDB=∠AEF=∠BFH
AD∥FH
∴∠FHC=∠ADC
∵EG//BC
∴∠AEG=∠ADC
∴∠FHC=∠AEG;∠AGE=∠C
在△AEG和△FHC中
∴△AEG≌△FHC
FC=AG=5
∵AC=8
∴FG=2
【解析】(1)利用角平分線,及對(duì)頂角可證△ABF≌△ABF,等量代換可得AE=FH
(2)利用(1)中所給條件及EG//BC,可證△AEG≌△FHC,F(xiàn)C=AG=5,F(xiàn)G=FC+AG-AC=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地新建的一個(gè)企業(yè),每月將生產(chǎn)1960噸污水,為保護(hù)環(huán)境,該企業(yè)計(jì)劃購(gòu)置污水處理器,并在如下兩個(gè)型號(hào)種選擇:
污水處理器型號(hào) | A型 | B型 |
處理污水能力(噸/月) | 240 | 180 |
已知商家售出的2臺(tái)A型、3臺(tái)B型污水處理器的總價(jià)為44萬元,售出的1臺(tái)A型、4臺(tái)B型污水處理器的總價(jià)為42萬元.
(1)求每臺(tái)A型、B型污水處理器的價(jià)格;
(2)為確保將每月產(chǎn)生的污水全部處理完,該企業(yè)決定購(gòu)買上述的污水處理器,那么他們至少要支付多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校園文學(xué)社為了解本校學(xué)生對(duì)本社一種報(bào)紙四個(gè)版面的喜歡情況,隨機(jī)抽取部分學(xué)生做了一次問卷調(diào)查,要求學(xué)生選出自己喜歡的一個(gè)版面,將調(diào)查數(shù)據(jù)進(jìn)行了整理、繪制成部分統(tǒng)計(jì)圖如下:
各版面選擇人數(shù)的扇形統(tǒng)計(jì)圖 各版面選擇人數(shù)的條形統(tǒng)計(jì)圖
請(qǐng)根據(jù)圖中信息,解答下列問題:
(1)該調(diào)查的樣本容量為 , ,“第一版”對(duì)應(yīng)扇形的圓心角為 ;
(2)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校有名學(xué)生,請(qǐng)你估計(jì)全校學(xué)生中最喜歡“第一版”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【探索發(fā)現(xiàn)】
如圖①,是一張直角三角形紙片,∠B=60°,小明想從中剪出一個(gè)以∠B為內(nèi)角且面積最大的矩形,經(jīng)過多次操作發(fā)現(xiàn),當(dāng)沿著中位線DE、EF剪下時(shí),所得的矩形的面積最大,隨后,他通過證明驗(yàn)證了其正確性,并得出:矩形的最大面積與原三角形面積的比值為 .
【拓展應(yīng)用】
如圖②,在△ABC中,BC=a,BC邊上的高AD=h,矩形PQMN的頂點(diǎn)P、N分別在邊AB、AC上,頂點(diǎn)Q、M在邊BC上,則矩形PQMN面積的最大值為 .(用含a,h的代數(shù)式表示)
【靈活應(yīng)用】
如圖③,有一塊“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明從中剪出了一個(gè)面積最大的矩形(∠B為所剪出矩形的內(nèi)角),求該矩形的面積.
【實(shí)際應(yīng)用】
如圖④,現(xiàn)有一塊四邊形的木板余料ABCD,經(jīng)測(cè)量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐師傅從這塊余料中裁出了頂點(diǎn)M、N在邊BC上且面積最大的矩形PQMN,求該矩形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘海輪位于燈塔的北偏東方向,距離燈塔的處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔的南偏東方向上的處.此時(shí),處與燈塔的距離約為 .(結(jié)果取整數(shù),參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)已知:如圖1,等腰直角三角形ABC中,∠B=90°,AD是∠BAC的外角平分線,交CB邊的延長(zhǎng)線于點(diǎn)D.
圖1
求證:BD=AB+AC
(2)對(duì)于任意三角形ABC,∠ABC=2∠C,AD是∠BAC的外角平分線,交CB邊的延長(zhǎng)線于點(diǎn)D,如圖2,請(qǐng)你寫出線段AC、AB、BD之間的數(shù)量關(guān)系并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P(﹣3,5)關(guān)于x軸的對(duì)稱點(diǎn)的坐標(biāo)是( 。
A. (3,﹣5) B. (﹣3,﹣5) C. (3,5) D. (5,﹣3)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com