(2013•徐匯區(qū)一模)在Rt△ABC中,∠C=90°,AC=5,AB=13,那么tanA等于(  )
分析:先根據(jù)勾股定理計(jì)算出BC=12,然后根據(jù)正切的定義求解.
解答:解:如圖,
∵∠C=90°,AC=5,AB=13,
∴BC=
AB2-AC2
=
132-52
=12,
∴tanA=
BC
AC
=
12
5

故選C.
點(diǎn)評:本題考查了銳角三角函數(shù)的定義:在直角三角形中,一銳角的正切等于它的對邊與鄰邊的比值.也考查了勾股定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•徐匯區(qū)一模)“數(shù)學(xué)迷”小楠通過從“特殊到一般”的過程,對倍角三角形(一個內(nèi)角是另一個內(nèi)角的2倍的三角形)進(jìn)行研究.得出結(jié)論:如圖1,在△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,如果∠A=2∠B,那么a2-b2=bc.
下面給出小楠對其中一種特殊情形的一種證明方法.
已知:如圖2,在△ABC中,∠A=90°,∠B=45°.
求證:a2-b2=bc.
證明:如圖2,延長CA到D,使得AD=AB.
∴∠D=∠ABD,
∵∠CAB=∠D+∠ABD=2∠D,∠CAB=90°
∴∠D=45°,∵∠ABC=45°,
∴∠D=∠ABC,又∠C=∠C
∴△ABC∽△BCD
BC
CD
=
AC
BC
,即
a
b+c
=
b
a

∴a2-b2=bc
根據(jù)上述材料提供的信息,請你完成下列情形的證明(用不同于材料中的方法也可以):
已知:如圖1,在△ABC中,∠A=2∠B.
求證:a2-b2=bc.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•徐匯區(qū)一模)將拋物線y=x2沿y軸向上平移1個單位后所得拋物線的解析式是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•徐匯區(qū)一模)拋物線y=mx2-5mx+n與y軸正半軸交于點(diǎn)C,與x軸分別交于點(diǎn)A和點(diǎn)B(1,0),且OC2=OA•OB.
(1)求拋物線的解析式;                                        
(2)點(diǎn)P是y軸上一點(diǎn),當(dāng)△PBC和△ABC相似時,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•徐匯區(qū)一模)梯形ABCD中,AB∥CD,CD=10,AB=50,cosA=
45
,∠A+∠B=90°,點(diǎn)M是邊AB的中點(diǎn),點(diǎn)N是邊AD上的動點(diǎn).
(1)如圖1,求梯形ABCD的周長;        
(2)如圖2,聯(lián)結(jié)MN,設(shè)AN=x,MN•cos∠NMA=y(0°<∠NMA<90°),求y關(guān)于x的關(guān)系式及定義域;
(3)如果直線MN與直線BC交于點(diǎn)P,當(dāng)P=∠A時,求AN的長.

查看答案和解析>>

同步練習(xí)冊答案