【題目】圖(1)是我們常見的“箭頭圖”,其中隱藏著哪些數(shù)學知識呢?下面請你解決以下問題:

(1)觀察如圖(1)“箭頭圖”,試探究∠BDC與∠A、∠B、∠C之間大小的關系,并說明理由;
(2)請你直接利用以上結論,回答下列兩個問題:
①如圖(2),把一塊三角板XYZ放置在△ABC上,使其兩條直角邊XY、XZ恰好經(jīng)過點B、C.若∠A=50°,求∠ABX+∠ACX

②如圖(3),∠ABD,∠ACD的五等分線分別相交于點G1、G2、G3、G4 , 若∠BDC=135°,∠BG1C=67°,求∠A的度數(shù).

【答案】
(1)解:∠BDC=∠A+∠B+∠C.理由:

連接AD并延長到M.

因為∠BDM=∠BAD+∠B,∠CDM=∠CAD+∠C,

所以∠BDM+∠CDM=∠BAD+∠B+∠CAD+∠C,

即∠BDC=∠BAC+∠B+∠C.


(2)解:①由(1)知:∠BXC=∠A+∠ABX+∠ACX,

由于∠BXC=90°,∠A=50°

所以∠ABX+∠ACX

=∠BXC﹣∠A

=90°﹣50°

=40°.

②在箭頭圖G1BDC中

因為∠BDC=∠G1+∠G1BD+∠G1CD,

又∵∠BDC=135°,∠BG1C=67°

∵∠ABD,∠ACD的五等分線分別相交于點G1、G2、G3、G4

∴4(∠DBG4+∠DCG4)=135°﹣67°

∴∠DBG4+∠DCG4=17°.

∴∠ABG1+∠ACG1=17°

∵在箭頭圖G1BAC中

∵∠BG1C=∠A+∠G1BA+∠G1CA,

又∵∠BG1C=67°,

∴∠A=50°.

答:∠A的度數(shù)是50°.


【解析】第1小題,連接AD并延長到M,利用三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和可得∠BDC=∠BAC+∠B+∠C;第2小題,由(1)知:∠BXC=∠A+∠ABX+∠ACX,再根據(jù)已知條件可求解。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,點上,,點上的動點,則的最小值為

A. 4 B.5 C. 6 D.7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是△ABC的角平分線,DE , DF分別是△ABD和△ACD的高,連接EFADG.下列結論:①AD垂直平分EF;②EF垂直平分AD;③AD平分∠EDF;④當∠BAC為60°時,AG=3DG , 其中不正確的結論的個數(shù)為( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學開展漢字聽寫大賽活動,為了解學生的參與情況,在該校隨機抽取了四個班級學生進行調查,將收集的數(shù)據(jù)整理并繪制成圖1和圖2兩幅尚不完整的統(tǒng)計圖,請根據(jù)圖中的信息,解答下列問題:

(1)這四個班參與大賽的學生共__________人;

(2)請你補全兩幅統(tǒng)計圖;

(3)求圖1中甲班所對應的扇形圓心角的度數(shù);

(4)若四個班級的學生總數(shù)是160人,全校共2000人,請你估計全校的學生中參與這次活動的大約有多少人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一架長25米的梯子,斜靠在豎直的墻上,這時梯子底端離墻7米.

(1)此時梯子頂端離地面多少米?
(2)若梯子頂端下滑4米,那么梯子底端將向左滑動多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有三張正面分別標有數(shù)字﹣3,1,3的不透明卡片,它們除數(shù)字外都相同,現(xiàn)將它們背面朝上,洗勻后從三張卡片中隨機地抽取一張,放回卡片洗勻后,再從三張卡片中隨機地抽取一張.

(1)試用列表或畫樹狀圖的方法,求兩次抽取的卡片上的數(shù)字之積為負數(shù)的概率;

(2)求兩次抽取的卡片上的數(shù)字之和為非負數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知拋物線與x軸交于A(﹣1,0),B(2,0)兩點,與y軸交于點C.

(1)求該拋物線的解析式;

(2)直線y=﹣x+n與該拋物線在第四象限內(nèi)交于點D,與線段BC交于點E,與x軸交于點F,且BE=4EC.

求n的值;

連接AC,CD,線段AC與線段DF交于點G,AGF與CGD是否全等?請說明理由;

(3)直線y=m(m0)與該拋物線的交點為M,N(點M在點N的左側),點 M關于y軸的對稱點為點M',點H的坐標為(1,0).若四邊形OM'NH的面積為.求點H到OM'的距離d的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】P(2,0)繞著原點O逆時針旋轉90°后得到的點Q的坐標是_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,點E在CD邊上,點F在DC延長線上,AE=BF.
(1)求證:四邊形ABFE是平行四邊形;
(2)若∠BEF=∠DAE,AE=3,BE=4,求EF的長.

查看答案和解析>>

同步練習冊答案