(本小題滿分12分)

某公司銷售一種新型節(jié)能產(chǎn)品,現(xiàn)準備從國內(nèi)和國外兩種銷售方案中選擇一種進行銷售.若只在國內(nèi)銷售,銷售價格y(元/件)與月銷量x(件)的函數(shù)關系式為y =x+150,成本為20元/件,無論銷售多少,每月還需支出廣告費62500元,設月利潤為w內(nèi)(元)(利潤 = 銷售額-成本-廣告費).若只在國外銷售,銷售價格為150元/件,受各種不確定因素影響,成本為a元/件(a為常數(shù),10≤a≤40),當月銷量為x(件)時,每月還需繳納x2 元的附加費,設月利潤為w(元)(利潤 = 銷售額-成本-附加費).

1.(1)當= 1000時,=         元/件,w內(nèi) =         元;

2.(2)分別求出w內(nèi)wx間的函數(shù)關系式(不必寫x的取值范圍);

3.(3)當x為何值時,在國內(nèi)銷售的月利潤最大?若在國外銷售月利潤的最大值與在國內(nèi)銷售月利潤的最大值相同,求a的值;

4.(4)如果某月要將5000件產(chǎn)品全部銷售完,請你通過分析幫公司決策,選擇在國內(nèi)還是在國外銷售才能使所獲月利潤較大?

參考公式:拋物線的頂點坐標是

 

【答案】

 

1.解:(1)140     57500

2.(2)w內(nèi) = x-20)- 62500 = x2+130 x

w = x2+(150x

3.(3)當= 6500時,w內(nèi)最大;分

由題意得 ,

解得a1 = 30,a2 = 270(不合題意,舍去).所以 = 30

4.(4)當x  = 5000時,w內(nèi) = 337500, w =

w內(nèi) w,則a<32.5;

w內(nèi) = w,則= 32.5;

w內(nèi) w,則a>32.5.

所以,當10≤ <32.5時,選擇在國外銷售;

= 32.5時,在國外和國內(nèi)銷售都一樣;

當32.5< ≤40時,選擇在國內(nèi)銷售

【解析】略

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011-2012學年九年級第二次模擬考試數(shù)學卷 題型:解答題

(本小題滿分12分)

如圖,反比例函數(shù)的圖象經(jīng)過A、B兩點,根據(jù)圖中信息解答下列問題:

1.(1)寫出A點的坐標;

2.(2)求反比例函數(shù)的解析式;

3.(3)若點A繞坐標原點O旋轉90°后得到點C,請寫出點C的坐標;并求出直線BC的解析式.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012年河北省衡水市五校九年級第三次聯(lián)考數(shù)學卷 題型:解答題

(本小題滿分12分)

如圖(1),△ABC與△EFD為等腰直角三角形,AC與DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,將△EFD繞點A 順時針旋轉,當DF邊與AB邊重合時,旋轉中止。不考慮旋轉開始和結束時重合的情況,設DE、DF(或它們的延長線)分別交BC(或它的延長線)于G、H點,如圖(2)。

1.(1)問:始終與△AGC相似的三角形有               

2.(2)設CG=x,BH=y(tǒng),求y關于x的函數(shù)關系式(只要求根據(jù)2的情況說明理由);

3.(3)問:當x為何值時,△AGH是等腰三角形?

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012年河北省衡水市五校九年級第三次聯(lián)考數(shù)學卷 題型:解答題

(本小題滿分12分)某班同學到野外活動,為測量一池塘兩端A、B的距離,設計了幾種方案,下面介紹兩種:(I)如圖(1),先在平地取一個可以直接到達A、B的點C,并分別延長AC到D,BC到E,使DC=AC,BC=EC,最后測出DE的距離即為AB的長。(II)如圖(2),先過B點作AB的垂線BF,再在BF上取C、D兩點,使BC=CD,接著過點D作BD的垂線DE,交AC的延長線于E,則測出DE的長即為AB的距離。閱讀后回答下列問題:

1.(1)方案(I)是否可行?為什么?

2.(2)方案(II)是否切實可行?為什么?

3.(3)方案(II)中作BF⊥AB,ED⊥BF的目的是            ;若僅滿足∠ABD=∠BDE≠90°,方案(II)是否成立?

4.(4)方案(II)中,若使BC=n·CD,能否測得(或求出)AB的長?理由是         ,若ED=m,則AB=      

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012年江蘇GSJY八年級第二次學情調研考試數(shù)學卷 題型:解答題

  (本小題滿分12分)

 1. (1)觀察發(fā)現(xiàn)

    如(a)圖,若點A,B在直線同側,在直線上找一點P,使AP+BP的值最小.

    做法如下:作點B關于直線的對稱點,連接,與直線的交點就是所求的點P

    再如(b)圖,在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最。

做法如下:作點B關于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這點就是所求的點P,故BP+PE的最小值為        . (2分)

        

 

2.(2)實踐運用

   如圖,菱形ABCD的兩條對角線分別長6和8,點P是對角線AC上的一個動點,點M、N分別是邊AB、BC的中點,求PM+PN的最小值。(5分)

3.(3)拓展延伸

    如(d)圖,在四邊形ABCD的對角線AC上找一點P,使∠APB=∠APD.保留作圖痕跡,不必寫出作法.  (5分)

 

查看答案和解析>>

科目:初中數(shù)學 來源:2014屆湖北省孝感市七年級下學期期中考試數(shù)學卷 題型:解答題

.(本小題滿分12分)

如圖,AD為△ABC的中線,BE為△ABD的中線。

(1)∠ABE=15°,∠BAD=40°,求∠BED的度數(shù);

(2)在△BED中作BD邊上的高;

(3)若△ABC的面積為40,BD=5,則△BDEBD邊上的高為多少?

 

查看答案和解析>>

同步練習冊答案