【題目】已知:如圖,在Rt△ABC中,BC=AC=2,點(diǎn)M是AC邊上一動(dòng)點(diǎn),連接BM,以CM為直徑的⊙O交BM于N,則線段AN的最小值為___.
【答案】﹣1
【解析】
如圖1,連接CN,根據(jù)CM是⊙O的直徑,得到∠CNM=90°,根據(jù)鄰補(bǔ)角的定義得到∠CNB=90°,根據(jù)圓周角定理得到點(diǎn)N在以BC為直徑的⊙O'上,推出當(dāng)點(diǎn)O'、N、A共線時(shí),AN最小,如圖2,根據(jù)勾股定理即可得到結(jié)論.
如圖1,連接CN.
∵CM是⊙O的直徑,
∴∠CNM=90°,
∴∠CNB=90°,
∴點(diǎn)N在以BC為直徑的⊙O'上.
∵⊙O'的半徑為1,
∴當(dāng)點(diǎn)O'、N、A共線時(shí),AN最小,如圖2.在Rt△AO'C中,∵O'C=1,AC=2,∴O'A,
∴AN=AO'﹣O'N1,
即線段AN長(zhǎng)度的最小值為1.
故答案為:1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線y=ax2+bx+3交x軸于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0).
(1)求該拋物線所對(duì)應(yīng)的函數(shù)解析式;
(2)如圖2,該拋物線與y軸交于點(diǎn)C,頂點(diǎn)為F,點(diǎn)D(2,3)在該拋物線上.
①求四邊形ACFD的面積;
②點(diǎn)P是線段AB上的動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)A、B重合),過(guò)點(diǎn)P作PQ⊥x軸交該拋物線于點(diǎn)Q,連接AQ、DQ,當(dāng)△AQD是直角三角形時(shí),求出所有滿足條件的點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,CE是外角平分線,點(diǎn)D在AC上,連結(jié)BD并延長(zhǎng)與CE交于點(diǎn)E.
(1)求證:△ABD∽△CED.
(2)若AB=6,AD=2CD,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,對(duì)稱(chēng)軸為直線x=﹣1的拋物線y=ax2+bx+c(a≠0)與x軸相交于A,B兩點(diǎn).
(1)若點(diǎn)A的坐標(biāo)為(﹣4,0),求點(diǎn)B的坐標(biāo).
(2)若已知a=1,點(diǎn)A的坐標(biāo)為(﹣3,0),C為拋物線與y軸的交點(diǎn).
①若點(diǎn)P在拋物線上,且S△POC=4S△BOC,求點(diǎn)P的坐標(biāo);
②設(shè)點(diǎn)Q是線段AC上的動(dòng)點(diǎn),作QD⊥x軸交拋物線于點(diǎn)D,求線段QD長(zhǎng)度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店銷(xiāo)售一種成本為20元的商品,經(jīng)調(diào)研,當(dāng)該商品每件售價(jià)為30元時(shí),每天可銷(xiāo)售200件:當(dāng)每件的售價(jià)每增加1元,每天的銷(xiāo)量將減少5件.
求銷(xiāo)量件與售價(jià)元之間的函數(shù)表達(dá)式;
如果每天的銷(xiāo)量不低于150件,那么,當(dāng)售價(jià)為多少元時(shí),每天獲取的利潤(rùn)最大,最大利潤(rùn)是多少?
該商店老板熱心公益事業(yè),決定從每天的銷(xiāo)售利潤(rùn)中捐出100元給希望工程,為保證捐款后每天剩余利潤(rùn)不低于2900元,請(qǐng)直接寫(xiě)出該商品售價(jià)的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某日的錢(qián)塘江觀潮信息如表:
按上述信息,小紅將“交叉潮”形成后潮頭與乙地之間的距離(千米)與時(shí)間(分鐘)的函數(shù)關(guān)系用圖3表示,其中:“11:40時(shí)甲地‘交叉潮’的潮頭離乙地12千米”記為點(diǎn),點(diǎn)坐標(biāo)為,曲線可用二次函數(shù)(,是常數(shù))刻畫(huà).
(1)求的值,并求出潮頭從甲地到乙地的速度;
(2)11:59時(shí),小紅騎單車(chē)從乙地出發(fā),沿江邊公路以千米/分的速度往甲地方向去看潮,問(wèn)她幾分鐘后與潮頭相遇?
(3)相遇后,小紅立即調(diào)轉(zhuǎn)車(chē)頭,沿江邊公路按潮頭速度與潮頭并行,但潮頭過(guò)乙地后均勻加速,而單車(chē)最高速度為千米/分,小紅逐漸落后,問(wèn)小紅與潮頭相遇到落后潮頭1.8千米共需多長(zhǎng)時(shí)間?(潮水加速階段速度,是加速前的速度).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們定義:有一組鄰角相等的凸四邊形叫做“等鄰角四邊形”.
概念理解:在“矩形、菱形和正方形”這三種特殊四邊形中,不一定是“等鄰角四邊形”的是______.
問(wèn)題探究:如圖,在等鄰角四邊形ABCD中,∠B=∠C,AB=3,BC=9,P為線段BC上一動(dòng)點(diǎn)(不包含端點(diǎn)B,C),Q為直線CD上一動(dòng)點(diǎn),連結(jié)PA,PQ,在P,Q的運(yùn)動(dòng)過(guò)程中始終滿足∠APQ=∠B,當(dāng)CQ達(dá)到最大時(shí),試求此時(shí)BP的長(zhǎng).
應(yīng)用拓展:在以60°為等角的等鄰角四邊形ABCD中,∠D=90°,若AB=3,AD=,試求等鄰角四邊形ABCD的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形紙片ABCD,AD=4,AB=3,如果點(diǎn)E在邊BC上,將紙片沿AE折疊,使點(diǎn)B落在點(diǎn)F處,聯(lián)結(jié)FC,當(dāng)△EFC是直角三角形時(shí),那么BE的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的正半軸交點(diǎn)在點(diǎn)(2,0)和(3,0)之間,對(duì)稱(chēng)軸是x=1.對(duì)于下列說(shuō)法:①abc<0;②2a+b=0;③a-b+c=0;④點(diǎn)(3,y1),(-2,y2)都在拋物線上,則有y1>y2,⑤當(dāng)-1<x<3時(shí),y>0,其中正確的是( 。
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com