7.已知半徑為r的圓的面積是半徑為2cm和3cm的兩個圓的面積之和,則r=(  )
A.5cmB.$\sqrt{5}$cmC.13cmD.$\sqrt{13}$cm

分析 先依據(jù)圓的面積公式列出算式,然后根據(jù)算術(shù)平方根的定義求解即可.

解答 解:由題意得:πr2=4π+9π.
整理得:r2=13.
由算術(shù)平方根的定義可知:r=$\sqrt{13}$cm.
故選:D.

點評 本題主要考查的是算術(shù)平方根的定義,由圓的面積公式得到r2=13是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.計算:
(1)213÷27
(2)(-$\frac{3}{2}$)6÷(-$\frac{3}{2}$)2
(3)a11÷a5
(4)(-x)7÷(-x);
(5)a-4÷a-6
(6)62m+1÷6m
(7)5n+1÷53n+1
(8)9n÷9n+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.已知關(guān)于x的函數(shù)y=(m-3)x-m+1的圖象不經(jīng)過第三象限,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.用加減消元法解下列方程組:
(1)$\left\{\begin{array}{l}{2x+y=-2}\\{x-3y=6}\end{array}\right.$ 
(2)$\left\{\begin{array}{l}{5x-3y=2}\\{4y+2x=6}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

2.方程組$\left\{\begin{array}{l}{\sqrt{2}x+\sqrt{3}y=1}\\{\sqrt{3}x+\sqrt{2}y=2}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=2\sqrt{3}-\sqrt{2}}\\{y=\sqrt{3}-2\sqrt{2}}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.閱讀下列解題過程:
2$\sqrt{0.5}$=$\sqrt{{2}^{2}}$×$\sqrt{0.5}$=$\sqrt{{2}^{2}×0.5}$=$\sqrt{2}$.
利用上面的解法.化簡下列各式:
(1)10$\sqrt{0.1}$;(2)5$\sqrt{\frac{1}{5}}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,a,b,c是三角形的三邊,若$\sqrt{(a-b+c)^{2}}$+$\sqrt{(c-a-b)^{2}}$=6,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

12.如圖,△ABO為等腰直角三角形,A(-4,0),直角頂點B在第二象限.點C在y軸上移動,以BC為斜邊作等腰直角△BCD,我們發(fā)現(xiàn)直角頂點D點隨著C點的移動也在一條直線上移動,這條直線的函數(shù)表達式是y=x+2或y=-x+2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.計算:
(1)($\frac{1}{3}$)-1+(-2016)0-(-2)3
(2)($\frac{x}{y}$)2•($\frac{y}{{x}^{2}}$)÷(-$\frac{y}{x}$)

查看答案和解析>>

同步練習(xí)冊答案