精英家教網(wǎng)如圖,已知反比例函數(shù)y=
1x
的圖象上有點(diǎn)P,過(guò)P點(diǎn)分別作x軸和y軸的垂線,垂足分別為A、B,使四邊形OAPB為正方形,又在反比例函數(shù)圖象上有點(diǎn)P1,過(guò)點(diǎn)P1分別作BP和y軸的垂線,垂足分別為A1、B1,使四邊形B A1P1B1為正方形,則點(diǎn)P1的坐標(biāo)是
 
分析:由于四邊形OAPB為正方形,則P的縱橫坐標(biāo)相等;且P的反比例函數(shù)圖象上,由此可以得到P的坐標(biāo)為(1,1),然后設(shè)四邊形B A1P1B1的邊長(zhǎng)為t;又有四邊形B A1P1B1為正方形,則點(diǎn)P1的坐標(biāo)是(t,1+t),代入反比例函數(shù)解析式即可求得t,從而求出點(diǎn)P1的坐標(biāo).
解答:解:∵四邊形OAPB為正方形,
∴P的縱、橫坐標(biāo)相等,
又∵P的反比例函數(shù)y=
1
x
的圖象上,
∴P的坐標(biāo)為(1,1),
設(shè)四邊形B A1P1B1的邊長(zhǎng)為t,
又∵四邊形B A1P1B1為正方形,
則點(diǎn)P1的坐標(biāo)是(t,1+t),
且其也在反比例函數(shù)圖象上,
將其坐標(biāo)代入解析式可得:t=
5
-1
2
,
故點(diǎn)P1的坐標(biāo)是(
5
-1
2
5
+1
2
).
點(diǎn)評(píng):此題綜合考查了反比例函數(shù),正方形的性質(zhì)等多個(gè)知識(shí)點(diǎn),此題難度稍大,綜合性比較強(qiáng),注意對(duì)各個(gè)知識(shí)點(diǎn)的靈活應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
m
x
圖象與一次函數(shù)y=kx+b的圖象均經(jīng)過(guò)A(-1,4)和B(a,
4
5
)兩點(diǎn),
(1)求B點(diǎn)的坐標(biāo)及兩個(gè)函數(shù)的解析式;
(2)若一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)C,求C點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
kx
(k>0)的圖象經(jīng)過(guò)點(diǎn)A(2,m),過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,且S△AOB=3.若一次函數(shù)y=ax+1的圖象經(jīng)過(guò)點(diǎn)A,并且與x軸相交于點(diǎn)C,求AO:AC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
kx
的圖象與一次函數(shù)y=ax+b的圖象交于M(2,m)和N(-1,-4)兩點(diǎn).
(1)求這兩個(gè)函數(shù)的解析式;
(2)求△MON的面積;
(3)請(qǐng)判斷點(diǎn)P(4,1)是否在這個(gè)反比例函數(shù)的圖象上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知反比例函數(shù)y1=
kx
和一次函數(shù)y2=ax+b的圖象相交于點(diǎn)A和點(diǎn)D,且點(diǎn)A的橫坐標(biāo)為1,點(diǎn)D的縱坐標(biāo)為-1.過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,△AOB的面積為1.
(1)求反比例函數(shù)和一次函數(shù)的解析式.
(2)若一次函數(shù)y2=ax+b的圖象與x軸相交于點(diǎn)C,求∠ACO的度數(shù).
(3)結(jié)合圖象直接寫出:當(dāng)y1>y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知反比例函數(shù)y=
k
x
的圖象經(jīng)過(guò)第二象限內(nèi)的點(diǎn)A(-1,m),AB⊥x軸于點(diǎn)B,△AOB的面積為2.若直線y=ax+b經(jīng)過(guò)點(diǎn)A,并且經(jīng)過(guò)反比例函數(shù)y=
k
x
的圖象上另一點(diǎn)C(n,一2).
(1)求直線y=ax+b的解析式;
(2)設(shè)直線y=ax+b與x軸交于點(diǎn)M,求AM的長(zhǎng);
(3)在雙曲線上是否存在點(diǎn)P,使得△MBP的面積為8?若存在請(qǐng)求P點(diǎn)坐標(biāo);若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案