【題目】如圖,中,AB=9cm,AC=6cm,兩內(nèi)角平分線BOCO相交于點O

1)若∠A=70,求∠BOC的度數(shù).

2)若直線DE過點O,與AB、AC分別相交于點D、E,且DE//BC,求的周長.

【答案】1;(215cm

【解析】

1)根據(jù)三角形的內(nèi)角和定理求出∠ABC+ACB,再根據(jù)角平分線的定義求出∠OBC+OCB,然后利用三角形的內(nèi)角和定理列式計算即可得解.

2)根據(jù)平行線的性質(zhì)和角平分線的性質(zhì),得到∠DBO=∠DOB,則BD=OD,同理可得OE=EC,即可求出三角形的周長.

解:(1)在△ABC中,∠ABC+ACB=180°A=180°70°=110°,

∵∠ABC與∠ACB的角平分線BOCO相交于點O,

∴∠OBC+OCB=(∠ABC+ACB=×110°=55°,

在△BOC中,∠BOC=180°(∠OBC+OCB=180°55°=125°.

2)如圖:

DEBC

∴∠DOB=OBC,

又∵BO是∠ABC的角平分線,

∴∠DBO=OBC,

∴∠DBO=DOB,

BD=OD

同理:OE=EC,

∴△ADE的周長=AD+OD+OE+AE=AD+BD+AE+EC=AB+AC=15cm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一組數(shù)據(jù)2、-1、0、2、-1、a的眾數(shù)為a,則這組數(shù)據(jù)的平均數(shù)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角中,,點上,,連接

(1)的度數(shù);

(2)當(dāng)時,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正五邊形ABCDE內(nèi)接于⊙O,過點A作⊙O的切線交對角線DB的延長線于點F,則下列結(jié)論不成立的是( 。

A. AEBD B. AB=BF C. AFCD D. DF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】十一期間,小明一家一起去旅游,如圖是小明設(shè)計的某旅游景點的圖紙(網(wǎng)格是由相同的小正方形組成的,且小正方形的邊長代表實際長度100m,在該圖紙上可看到兩個標(biāo)志性景點A,B.若建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,則點A(﹣3,1),B(﹣3,﹣3),第三個景點C(1,3)的位置已破損.

(1)請在圖中畫出平面直角坐標(biāo)系,并標(biāo)出景點C的位置;

(2)平面直角坐標(biāo)系的坐標(biāo)原點為點O,ACO是直角三角形嗎?請判斷并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖題:

1)如圖①,已知:.求作:射線,使平分(要求:尺規(guī)作圖,不寫作法,但需保留作圖痕跡)

2)題(1)中作圖的依據(jù)是全等三角形判定方法中的__________

3)在圖②中作出,使它與關(guān)于軸對稱.

4)在圖②中的軸上找到一點,使的周長最小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,點A、B、C的坐標(biāo)分別為A(,0)、B(3,0)、C(0,5),點D在第一象限內(nèi),且∠ADB=60°,則線段CD的長的最小值是( 。

A. 2﹣2 B. 2 C. 2 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果批發(fā)商場銷售一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場調(diào)查發(fā)現(xiàn),在進(jìn)貨價不變的情況下.若每千克漲價1元,日銷售量將減少20千克.

(1)現(xiàn)該商場要保證每天盈利6000元,同時又要使顧客得到實惠,那么每千克應(yīng)漲價多少元?

(2)每千克水果漲價多少元時,商場每天獲得的利潤最大?獲得的最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過點A04),B1,0),C5,0),其對稱軸與x軸交于點M

1)求此拋物線的解析式和對稱軸;

2)在此拋物線的對稱軸上是否存在一點P,使△PAB的周長最?若存在,請求出點P的坐標(biāo);若不存在,請說明理由;

3)連接AC,在直線AC下方的拋物線上,是否存在一點N,使△NAC的面積最大?若存在,請求出點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案