【題目】如圖,已知點(diǎn)A(4,0),B(0,),把一個(gè)直角三角尺DEF放在△OAB內(nèi),使其斜邊FD在線段AB上,三角尺可沿著線段AB上下滑動(dòng).其中∠EFD=30°,ED=2,點(diǎn)G為邊FD的中點(diǎn).

(1)求直線AB的解析式;
(2)如圖1,當(dāng)點(diǎn)D與點(diǎn)A重合時(shí),求經(jīng)過(guò)點(diǎn)G的反比例函數(shù)(k≠0)的解析式;
(3)在三角尺滑動(dòng)的過(guò)程中,經(jīng)過(guò)點(diǎn)G的反比例函數(shù)的圖象能否同時(shí)經(jīng)過(guò)點(diǎn)F?如果能,求出此時(shí)反比例函數(shù)的解析式;如果不能,說(shuō)明理由.

【答案】
(1)

解:設(shè)直線AB的解析式為y=kx+b,

∵A(4,0),B(0,),

,

解得:,

∴直線AB的解析式為:


(2)

解:

∵在Rt△DEF中,∠EFD=30°,ED=2,

∴EF=,DF=4,

∵點(diǎn)D與點(diǎn)A重合,

∴D(4,0),

∴F(2,),

∴G(3,),

∵反比例函數(shù)經(jīng)過(guò)點(diǎn)G,

∴k=

∴反比例函數(shù)的解析式為:;


(3)

解:

經(jīng)過(guò)點(diǎn)G的反比例函數(shù)的圖象能同時(shí)經(jīng)過(guò)點(diǎn)F;理由如下:

∵點(diǎn)F在直線AB上,

∴設(shè)F(t,),

又∵ED=2,

∴D(t+2,),

∵點(diǎn)G為邊FD的中點(diǎn).

∴G(t+1,),

若過(guò)點(diǎn)G的反比例函數(shù)的圖象也經(jīng)過(guò)點(diǎn)F,

設(shè)解析式為

,

整理得:()(t+1)=()t,

解得:t=,

∴m=,

∴經(jīng)過(guò)點(diǎn)G的反比例函數(shù)的圖象能同時(shí)經(jīng)過(guò)點(diǎn)F,這個(gè)反比例函數(shù)解析式為:.


【解析】(1)設(shè)直線AB的解析式為y=kx+b,把點(diǎn)A、B的坐標(biāo)代入,組成方程組,解方程組求出k、b的值即可;
(2)由Rt△DEF中,求出EF、DF,在求出點(diǎn)D坐標(biāo),得出點(diǎn)F、G坐標(biāo),把點(diǎn)G坐標(biāo)代入反比例函數(shù)求出k即可;
(3)設(shè)F(t,﹣t+4),得出D、G坐標(biāo),設(shè)過(guò)點(diǎn)G和F的反比例函數(shù)解析式為y=,用待定系數(shù)法求出t、m,即可得出反比例函數(shù)解析式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,已知AD>AB.在邊AD上取點(diǎn)E,使AE=AB,連結(jié)CE,過(guò)點(diǎn)E作EF⊥CE,與邊AB或其延長(zhǎng)線交于點(diǎn)F.
猜想:如圖①,當(dāng)點(diǎn)F在邊AB上時(shí),線段AF與DE的大小關(guān)系為_(kāi)_____.
探究:如圖②,當(dāng)點(diǎn)F在邊AB的延長(zhǎng)線上時(shí),EF與邊BC交于點(diǎn)G.判斷線段AF與DE的大小關(guān)系,并加以證明.
應(yīng)用:如圖②,若AB=2,AD=5,利用探究得到的結(jié)論,求線段BG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,如果AF=BE,那么∠AOD的度數(shù)是  .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分線交于點(diǎn)E,則∠AEC= .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列剪紙圖案中,既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,把點(diǎn)P(﹣5,3)向右平移8個(gè)單位得到點(diǎn)P1 , 再將點(diǎn)P1繞原點(diǎn)旋轉(zhuǎn)90°得到點(diǎn)P2 , 則點(diǎn)P2的坐標(biāo)是(  )
A.(3,﹣3)
B.(﹣3,3)
C.(3,3)或(﹣3,﹣3)
D.(3,﹣3)或(﹣3,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.
(1)試判斷原方程根的情況;
(2)若拋物線y=x2﹣(m﹣3)x﹣m與x軸交于A(x1 , 0),B(x2 , 0)兩點(diǎn),則A,B兩點(diǎn)間的距離是否存在最大或最小值?若存在,求出這個(gè)值;若不存在,請(qǐng)說(shuō)明理由.(友情提示:AB=|x2﹣x1|)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知平行四邊形ABCD,對(duì)角線AC,BD相交于點(diǎn)O,∠OBC=∠OCB.
(1)求證:平行四邊形ABCD是矩形;
(2)請(qǐng)?zhí)砑右粋(gè)條件使矩形ABCD為正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算與化簡(jiǎn)
(1)|﹣3|﹣( 2+(1﹣π)0;
(2)(x+2y)2+(x+2y)(x﹣2y).

查看答案和解析>>

同步練習(xí)冊(cè)答案