如圖,在平面直角坐標(biāo)系xOy中,拋物線的頂點(diǎn)為A,與y軸的交點(diǎn)為B,連結(jié)AB,AC⊥AB,交y軸于點(diǎn)C,延長(zhǎng)CA到點(diǎn)D,使AD=AC,連結(jié)BD.作AE∥x軸,DE∥y軸.

(1)當(dāng)m=2時(shí),求點(diǎn)B的坐標(biāo);

(2)求DE的長(zhǎng)?

(3)①設(shè)點(diǎn)D的坐標(biāo)為(x,y),求y關(guān)于x的函數(shù)關(guān)系式?②過點(diǎn)D作AB的平行線,與第(3)①題確定的函數(shù)圖象的另一個(gè)交點(diǎn)為P,當(dāng)m為何值時(shí),以,A,B,D,P為頂點(diǎn)的四邊形是平行四邊形?

 

【答案】

解:(1)當(dāng)m=2時(shí),,

把x=0代入,得:y=2,

∴點(diǎn)B的坐標(biāo)為(0,2)。

(2)延長(zhǎng)EA,交y軸于點(diǎn)F,

∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,

∴△AFC≌△AED(AAS)!郃F=AE。

∵點(diǎn)A(m,),點(diǎn)B(0,m),

∴AF=AE=|m|,,

∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°,

∴△ABF∽△DAE,∴,即:!郉E=4。

(3)①∵點(diǎn)A的坐標(biāo)為(m,),∴點(diǎn)D的坐標(biāo)為(2m,)。

∴x=2m,y=,

∴y=

∴所求函數(shù)的解析式為:y=。

②作PQ⊥DE于點(diǎn)Q,則△DPQ≌△BAF,

(Ⅰ)當(dāng)四邊形ABDP為平行四邊形時(shí)(如圖1),

點(diǎn)P的橫坐標(biāo)為3m,

點(diǎn)P的縱坐標(biāo)為:,

把P(3m,)代入y=得:

。

解得:m=0(此時(shí)A,B,D,P在同一直線上,舍去)或m=8。

(Ⅱ)當(dāng)四邊形ABDP為平行四邊形時(shí)(如圖2),

點(diǎn)P的橫坐標(biāo)為m,

點(diǎn)P的縱坐標(biāo)為:,

把P(m,)代入得:

。

解得:m=0(此時(shí)A,B,D,P在同一直線上,舍去)或m=﹣8。

綜上所述:m的值為8或﹣8。

【解析】(1)將m=2代入原式,得到二次函數(shù)的頂點(diǎn)式,據(jù)此即可求出B點(diǎn)的坐標(biāo)。

(2)延長(zhǎng)EA,交y軸于點(diǎn)F,證出△AFC≌△AED,進(jìn)而證出△ABF∽△DAE,利用相似三角形的性質(zhì),求出DE=4。

(3)①根據(jù)點(diǎn)A和點(diǎn)B的坐標(biāo),得到x=2m,y=﹣m2+m+4,將m=代入y=﹣m2+m+4,即可求出二次函數(shù)的表達(dá)式。

②作PQ⊥DE于點(diǎn)Q,則△DPQ≌△BAF,然后分(如圖1)和(圖2)兩種情況解答。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案