【題目】如圖,學(xué)校準(zhǔn)備在教學(xué)樓后面搭建一簡(jiǎn)易矩形自行車(chē)車(chē)棚,一邊利用教學(xué)樓的后墻(可利用的墻長(zhǎng)為18m),另外三邊利用學(xué),,F(xiàn)有總長(zhǎng)38m的鐵欄圍成.
(1)若圍成的面積為,試求出自行車(chē)車(chē)棚的長(zhǎng)和寬;
(2)能?chē)擅娣e為的自行車(chē)車(chē)棚嗎?如果能,請(qǐng)你給出設(shè)計(jì)方案;如果不能,請(qǐng)說(shuō)明理由.
【答案】(1)若圍成的面積為,自行車(chē)車(chē)棚的長(zhǎng)和寬分別為,.(2)不能?chē)擅娣e為的自行車(chē)車(chē)棚,理由見(jiàn)解析.
【解析】
(1)利用長(zhǎng)方形的周長(zhǎng)表示出各邊長(zhǎng),即可表示出矩形面積,求出即可;
(2)利用長(zhǎng)方形的面積列方程,利用根的判別式解答即可.
(1)設(shè)車(chē)棚的寬為,則長(zhǎng)為,
根據(jù)題意得,,
解得,.
當(dāng)時(shí),,
當(dāng)時(shí),,不合題意,舍去,
所以若圍成的面積為,自行車(chē)車(chē)棚的長(zhǎng)和寬分別為,.
(2)不能?chē)擅娣e為的自行車(chē)車(chē)棚.理由如下:
設(shè)車(chē)棚的寬為,則長(zhǎng)為,
根據(jù)題意得,,
整理,得,
,
所以此方程沒(méi)有實(shí)數(shù)根,
所以不能?chē)擅娣e為的自行車(chē)車(chē)棚.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2x+m.
(1)如果二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),求m的取值范圍;
(2)如圖,二次函數(shù)的圖象過(guò)點(diǎn)A(3,0),交y軸于B,D是頂點(diǎn),求△ABD的面積.
(3)在(2)的條件下,根據(jù)圖象直接寫(xiě)出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把兩個(gè)全等的等腰直角三角形ABC和EFG(其直角邊長(zhǎng)均為4)疊放在一起(如圖①),且使三角板EFG的直角頂點(diǎn)G與三角板ABC的斜邊中點(diǎn)O重合.現(xiàn)將三角板EFG繞O點(diǎn)順時(shí)針旋轉(zhuǎn)(旋轉(zhuǎn)角α滿(mǎn)足條件:0°<α<90°),四邊形CHGK是旋轉(zhuǎn)過(guò)程中兩三角板的重疊部分(如圖②).
(1)在上述旋轉(zhuǎn)過(guò)程中,BH與CK有怎樣的數(shù)量關(guān)系四邊形CHGK的面積有何變化?證明你發(fā)現(xiàn)的結(jié)論;
(2)連接HK,在上述旋轉(zhuǎn)過(guò)程中,設(shè)BH=x,△GKH的面積為y,求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(3)在(2)的前提下,是否存在某一位置,使△GKH的面積恰好等于△ABC面積的?若存在,求出此時(shí)x的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在△ABC中,AB=AC,∠BAC=90°,D、E分別是AB、AC邊的中點(diǎn).將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α角(0°<α<180°),得到△AB′C′(如圖②).
(1)探究DB′與EC′的數(shù)量關(guān)系,并給予證明;
(2)當(dāng)DB′∥AE時(shí),求此時(shí)旋轉(zhuǎn)角α的度數(shù);
(3)如圖③,在旋轉(zhuǎn)過(guò)程中,設(shè)AC′與DE所在直線(xiàn)交于點(diǎn)P,當(dāng)△ADP成為等腰三角形時(shí),求此時(shí)的旋轉(zhuǎn)角α的度數(shù).(直接寫(xiě)出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:正方形中,,繞點(diǎn)順時(shí)針旋轉(zhuǎn),它的兩邊分別交(或它們的延長(zhǎng)線(xiàn))于點(diǎn).
當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí)(如圖1),易證.
(1)當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí)(如圖2),線(xiàn)段和之間有怎樣的數(shù)量關(guān)系?寫(xiě)出猜想,并加以證明.
(2)當(dāng)繞點(diǎn)旋轉(zhuǎn)到如圖3的位置時(shí),線(xiàn)段和之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在10×10的正方形網(wǎng)格中(每個(gè)小正方形的邊長(zhǎng)都為1個(gè)單位),△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上.建立如圖所示的直角坐標(biāo)系,
請(qǐng)?jiān)趫D中標(biāo)出△ABC的外接圓的圓心P的位置,并填寫(xiě): 圓心P的坐標(biāo):P( , )
(2)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ADE,畫(huà)出圖
形,并求△ABC掃過(guò)的圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)交x軸于A、B兩點(diǎn),直線(xiàn)y=kx+b經(jīng)過(guò)點(diǎn)A,與這條拋物線(xiàn)的對(duì)稱(chēng)軸交于點(diǎn)M(1,2),且點(diǎn)M與拋物線(xiàn)的頂點(diǎn)N關(guān)于x軸對(duì)稱(chēng).
(1)求拋物線(xiàn)的函數(shù)關(guān)系式;
(2)設(shè)題中的拋物線(xiàn)與直線(xiàn)的另一交點(diǎn)為C,已知P(x,y)為線(xiàn)段AC上一點(diǎn),過(guò)點(diǎn)P作PQ⊥x軸,交拋物線(xiàn)于點(diǎn)Q.求線(xiàn)段PQ的最大值及此時(shí)P坐標(biāo);
(3)在(2)的條件下,求△AQC面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一段拋物線(xiàn):y=-x(x-3)(0≤x≤3),記為C1,它與x軸交于兩點(diǎn)O,A1;將C1繞A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2繞A2旋轉(zhuǎn)180°得到C3,交x軸于A3,過(guò)拋物線(xiàn)C1,C3頂點(diǎn)的直線(xiàn)與C1、C2、C3圍成的如圖中的陰影部分,那么該面積為_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,點(diǎn)P從A出發(fā)沿AC向C點(diǎn)以1厘米/秒的速度勻速移動(dòng);點(diǎn)Q從C出發(fā)沿CB向B點(diǎn)以2厘米/秒的 速度勻速移動(dòng).點(diǎn)P、Q分別從起點(diǎn)同時(shí)出發(fā),移動(dòng)到某一位置時(shí)所需時(shí)間為t秒.
(1)當(dāng)t= 時(shí),PQ∥AB
(2)當(dāng)t為何值時(shí),△PCQ的面積等于5cm2?
(3)在P、Q運(yùn)動(dòng)過(guò)程中,在某一時(shí)刻,若將△PQC翻折,得到△EPQ,如圖2,PE與AB能否垂直?若能,求出相應(yīng)的t值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com