【題目】如圖,AOB是一鋼架,且O=15°,為使鋼架更加牢固,需在其內(nèi)部添加一些鋼管EF、FG、GH、…,添加的鋼管長度都與OE相等,則最多能添加這樣的鋼管(  )

A. 2 B. 4 C. 5 D. 無數(shù)根

【答案】C

【解析】分析:因?yàn)槊扛摴艿拈L度相等,可推出圖中的5個(gè)三角形都為等腰三角形,再根據(jù)外角性質(zhì),推出最大的∠0BQ的度數(shù)(必須≤90°),就可得出鋼管的根數(shù).

詳解:如圖所示,∠AOB=15°

OE=FE,

∴∠GEF=EGF=15°×2=30°,

EF=GF,所以∠EGF=30°

∴∠GFH=15°+30°=45°

GH=GF

∴∠GHF=45°,HGQ=45°+15°=60°

GH=HQ,GQH=60°,QHB=60°+15°=75°,

QH=QB

∴∠QBH=75°,HQB=180-75°-75°=30°,

故∠OQB=60°+30°=90°,不能再添加了.

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組想測量河流的寬度AB,河流兩岸AC,BD互相平行,河流對岸有兩棵樹A和C,且A、C之間的距離是60m,他們在D處測得∠BDC=36°,前行140米后測得∠BPA=45°,請根據(jù)這些數(shù)據(jù)求出河流的寬度.
(結(jié)果精確到0.1米,參考數(shù)據(jù):tan36°≈0.73,sin36°≈0.59,cos36°≈0.81)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a、b、c滿足|a﹣|++(c﹣42=0.

(1)求a、b、c的值;

(2)判斷以a、b、c為邊能否構(gòu)成三角形?若能構(gòu)成三角形,此三角形是什么形狀?并求出三角形的面積;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索規(guī)律,觀察下面算式,解答問題.

1+3 =4 =22;

1+3+5=9=32;

1+3+5+7=16=42;

1+3+5+7+9=25=52;

(1)請猜想1+3+5+7+9+…+19=

(2)請猜想1+3+5+7+9+…+(2n-1)+(2n +1)+(2n +3)=

(3)試計(jì)算:101 +103+…+197 +199.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y= (x﹣3)2﹣1與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D.

(1)求點(diǎn)A,B,D的坐標(biāo);
(2)連接CD,過原點(diǎn)O作OE⊥CD,垂足為H,OE與拋物線的對稱軸交于點(diǎn)E,連接AE,AD,求證:∠AEO=∠ADC;
(3)以(2)中的點(diǎn)E為圓心,1為半徑畫圓,在對稱軸右側(cè)的拋物線上有一動(dòng)點(diǎn)P,過點(diǎn)P作⊙E的切線,切點(diǎn)為Q,當(dāng)PQ的長最小時(shí),求點(diǎn)P的坐標(biāo),并直接寫出點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(﹣2,0),等邊三角形AOC經(jīng)過平移或軸對稱或旋轉(zhuǎn)都可以得到△OBD.
(1)△AOC沿x軸向右平移得到△OBD,則平移的距離是個(gè)單位長度;△AOC與△BOD關(guān)于直線對稱,則對稱軸是;△AOC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)得到△DOB,則旋轉(zhuǎn)角度可以是度;
(2)連結(jié)AD,交OC于點(diǎn)E,求∠AEO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從熱氣球C處測得地面A、B兩點(diǎn)的俯角分別是30°、45°,如果此時(shí)熱氣球C處的高度CD為100米,點(diǎn)A、D、B在同一直線上,則AB兩點(diǎn)的距離是( )

A.200米
B.200
C.220
D.100( +1)米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,過點(diǎn)C的直線MNABDAB邊上一點(diǎn),過點(diǎn)DDEBC,交直線MNE,垂足為F,連接CDBE.

(1)求證:CEAD;

(2)當(dāng)DAB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說明你的理由;

(3)若DAB中點(diǎn),則當(dāng)∠A的大小滿足什么條件時(shí),四邊形BECD是正方形?請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=﹣ x+1與x軸、y軸分別交于B點(diǎn)、A點(diǎn),直線y=2x﹣2與x軸、y軸分別交于D點(diǎn)、E點(diǎn),兩條直線交于點(diǎn)C;

(1)求A、B、C、D、E的坐標(biāo);
(2)請用相似三角形的相關(guān)知識(shí)證明:AB⊥DE;
(3)求△CBD的外接圓的半徑.

查看答案和解析>>

同步練習(xí)冊答案