【題目】如圖是拋物線圖像的一部分,拋物線的項(xiàng)點(diǎn)坐標(biāo)是A(1,3),與軸的一個(gè)交點(diǎn)B(4,0),直線與拋物線交于,兩點(diǎn),下列結(jié)論:①:②;③方程有兩個(gè)相等的實(shí)數(shù)根:④當(dāng)時(shí),有;⑤拋物線與軸的另一個(gè)交點(diǎn)是(-1,0),其中正確的是( )
A.①②③B.①③④C.①③⑤D.②④⑤
【答案】B
【解析】
根據(jù)拋物線對(duì)稱軸方程對(duì)①進(jìn)行判斷;由拋物線開口方向得到a<0,由對(duì)稱軸位置可得b>0,由拋物線與y軸的交點(diǎn)位置可得c>0,于是可對(duì)②進(jìn)行判斷;根據(jù)頂點(diǎn)坐標(biāo)對(duì)③進(jìn)行判斷;根據(jù)函數(shù)圖象得當(dāng)1<x<4時(shí),一次函數(shù)圖象在拋物線下方,則可對(duì)④進(jìn)行判斷;根據(jù)拋物線的對(duì)稱性對(duì)⑤進(jìn)行判斷.
∵拋物線的頂點(diǎn)坐標(biāo)A(1,3),
∴拋物線的對(duì)稱軸為直線x==1,
∴2a+b=0,所以①正確;
∵拋物線開口向下,
∴a<0,
∴b=2a>0,
∵拋物線與y軸的交點(diǎn)在x軸上方,
∴c>0,
∴abc<0,所以②錯(cuò)誤;
∵拋物線的頂點(diǎn)坐標(biāo)A(1,3),
∴x=1時(shí),二次函數(shù)有最大值,
∴方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根,所以③正確;
∵拋物線y1=ax2+bx+c與直線y2=mx+n(m≠0)交于A(1,3),B點(diǎn)(4,0)
∴當(dāng)1<x<4時(shí),y2<y1,所以④正確.
∵拋物線與x軸的一個(gè)交點(diǎn)為(4,0)
而拋物線的對(duì)稱軸為直線x=1,
∴拋物線與x軸的另一個(gè)交點(diǎn)為(2,0),所以⑤錯(cuò)誤;
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)閱讀下列解題過程:
解一元二次不等式:x2-3x>0.
解:x(x-3)>0,
∴或,
解得x>3或x<0.
∴一元二次不等式x2-3x>0的解集為x<0或x>3.
結(jié)合上述解題過程回答下列問題:
(1)上述解題過程滲透的數(shù)學(xué)思想為 ;
(2)一元二次不等式x2-3x<0的解集為 ;
(3)請(qǐng)用類似的方法解一元二次不等式:x2-2x-3<0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC中,A(6,0)、C(0,)、D(0,),射線l過點(diǎn)D且與x軸平行,點(diǎn)P、Q分別是l和x軸正半軸上動(dòng)點(diǎn),滿足∠PQO=60°.
(1)①點(diǎn)B的坐標(biāo)是 ;
②當(dāng)點(diǎn)Q與點(diǎn)A重合時(shí),點(diǎn)P的坐標(biāo)為 ;
(2)設(shè)點(diǎn)P的橫坐標(biāo)為x,△OPQ與矩形OABC的重疊部分的面積為S,試求S與x的函數(shù)關(guān)系式及相應(yīng)的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x+6與y軸交于點(diǎn)A,與x軸交于點(diǎn)B,點(diǎn)E為線段AB的中點(diǎn),∠ABO的平分線BD與y軸相交于點(diǎn)D,A、C兩點(diǎn)關(guān)于x軸對(duì)稱.
(1)一動(dòng)點(diǎn)P從點(diǎn)E出發(fā),沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到直線BC上的點(diǎn)F,再沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)到點(diǎn)D處.當(dāng)P的運(yùn)動(dòng)路徑最短時(shí),求此時(shí)點(diǎn)F的坐標(biāo)及點(diǎn)P所走最短路徑的長(zhǎng);
(2)點(diǎn)E沿直線y=3水平向右運(yùn)動(dòng)得點(diǎn)E',平面內(nèi)是否存在點(diǎn)M使得以D、B、M、E'為頂點(diǎn)的四邊形為菱形,若存在,請(qǐng)直接寫出點(diǎn)E′的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(jí)甲、乙兩班各有學(xué)生50人,為了了解這兩個(gè)班學(xué)生身體素質(zhì)情況,進(jìn)行了抽樣調(diào)查,數(shù)據(jù)整理過程如下,請(qǐng)完成下面數(shù)據(jù)整理中的問題:
(1)收集數(shù)據(jù)
從甲、乙兩個(gè)班中各隨機(jī)抽取10名學(xué)生進(jìn)行身體素質(zhì)測(cè)試,測(cè)試成績(jī)(百分制)如下:
甲班:65,75,75,80,60,50,75,90,85,65;
乙班:90,55,80,70,55,70,95,80,65,70;
(2)整理描述數(shù)據(jù)
按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
成績(jī)x 人數(shù) 班級(jí) | 50≤x<60 | 60≤x<70 | 70≤x<80 | 80≤x<90 | 90≤x<100 |
甲班 | 1 | 3 | 3 | 2 | 1 |
乙班 | 2 | 1 | m | 2 | n |
在表中:m= ,n= ;
(3)分析數(shù)據(jù)
①若規(guī)定測(cè)試成績(jī)?cè)?/span>80分(含80分)以上的學(xué)生身體素質(zhì)為優(yōu)秀,請(qǐng)估計(jì)乙班50名學(xué)生中身體素質(zhì)為優(yōu)秀的學(xué)生有 人;
②現(xiàn)從甲班指定的3名學(xué)生(1男2女),乙班指定的2名學(xué)生(1男1女)中分別抽取1名學(xué)生去參加身體素質(zhì)拓展訓(xùn)練,用樹狀圖或列表法求出抽到的2名同學(xué)中恰好是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(﹣2,1),B(1,n)兩點(diǎn).
根據(jù)以往所學(xué)的函數(shù)知識(shí)以及本題的條件,你能提出求解什么問題?并解決這些問題(至少三個(gè)問題).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊三角形的土地,它的一條邊BC=100米,DC邊上的高AH=80米,某單位要沿著邊BC修一座底面是矩形DEFG的大樓,D、G分別在邊AB、AC上.若大樓的寬是40米(即DE=40米),則這個(gè)矩形的面積是_____平方米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,∠B=30°,點(diǎn)O在AB上,以點(diǎn)O為圓心,OA為半徑的圓與BC相切與點(diǎn)D,與AC相交與點(diǎn)E,若CD=6,則CE=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是半圓弧上一動(dòng)點(diǎn),連接PA、PB,過圓心O作交PA于點(diǎn)C,連接已知,設(shè)O,C兩點(diǎn)間的距離為xcm,B,C兩點(diǎn)間的距離為ycm.
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行探究.
下面是小東的探究過程,請(qǐng)補(bǔ)充完整:
通過取點(diǎn)、畫圖、測(cè)量,得到了x與y的幾組值,如下表:
0 | 1 | 2 | 3 | ||||
3 | 6 |
說明:補(bǔ)全表格時(shí)相關(guān)數(shù)據(jù)保留一位小數(shù)
建立直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
結(jié)合畫出的函數(shù)圖象,解決問題:直接寫出周長(zhǎng)C的取值范圍是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com