【題目】如圖,是一個照相機(jī)成像的示意圖,像高MN,景物高度AB、
CD為水平視線,根據(jù)物體成像原理知:AB∥MN,CD⊥MN.
(1)如果像高MN是35mm,焦距CL是50mm,拍攝的景物高度AB是4.9m,拍攝點(diǎn)離景物的距離LD是多少?
(2)如果要完整的拍攝高度是2m的景物,拍攝點(diǎn)離景物有4m,像高不變,則相機(jī)的焦距應(yīng)調(diào)整為多少毫米?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線PA交⊙O于A、B兩點(diǎn),AE是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),且AC平分∠PAE,過C作CD⊥PA,垂足為D.
(1)求證:CD為⊙O的切線;
(2)若DC+DA=6,⊙O的直徑為10,求AB的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列條件之一能使平行四邊形ABCD是菱形的為_____________.
①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1, ABCD和AEFG是兩個能完全重合的平行四邊形,現(xiàn)從AB與AE重合時開始,將ABCD固定不動, AEFG繞點(diǎn)A逆時針旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°<α<360°),AB=a,BC=2a;并發(fā)現(xiàn):如圖2,當(dāng)AEFG旋轉(zhuǎn)到點(diǎn)E落在AD上時,FE的延長線恰好通過點(diǎn)C.
探究一:
(1)在圖2的情形下,求旋轉(zhuǎn)角α的度數(shù);
探究二:
(2)如圖3,當(dāng)AEFG旋轉(zhuǎn)到點(diǎn)E落在BC上時,EF與AD相交于點(diǎn)M,連接CM,DF,請你判斷四邊形CDFM的形狀,并給予證明;
探究三:
(3)如圖1,連接CF,BF,在旋轉(zhuǎn)過程中△BCF的面積是否存在最大的情形,如果存在,求出最大面積,如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正三角形OAB的頂點(diǎn)B的坐標(biāo)為(2,0),點(diǎn)A在第一象限內(nèi),將△OAB沿直線OA的方向平移至△O′A′B′的位置,此時點(diǎn)A′的橫坐標(biāo)為3,則點(diǎn)B′的坐標(biāo)為( )
A. (4,2) B. (3,3) C. (4,3) D. (3,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查學(xué)生對“節(jié)約教育”內(nèi)容的了解程度(程度分為:“—了解很多”,“—了解較多”,“—了解較少”,“—不了解”),對某中學(xué)的部分學(xué)生進(jìn)行了調(diào)查,將這次調(diào)查的結(jié)果繪制成以下兩幅統(tǒng)計(jì)圖.根據(jù)以上信息,解答下列問顧:
(1)本次調(diào)查了多少名學(xué)生?
(2)若該校共有1800名學(xué)生,請你估計(jì)這所學(xué)校的所有學(xué)生中,對“節(jié)約教育”內(nèi)容“了解較多”的有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的兩條邊在坐標(biāo)軸上,OA=1,OC=2,現(xiàn)將此矩形向右平移,每次平移1個單位,若第1次平移得到的矩形的邊與反比例函數(shù)圖象有兩個交點(diǎn),它們的縱坐標(biāo)之差的絕對值為0.6,則第n次(n>1)平移得到的矩形的邊與該反比例函數(shù)圖象的兩個交點(diǎn)的縱坐標(biāo)之差的絕對值為________(用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,鐘表的分針勻速旋轉(zhuǎn)一周需要60分鐘,那么:
(1)它的旋轉(zhuǎn)中心是什么?
(2)分針旋轉(zhuǎn)一周,時針旋轉(zhuǎn)多少度?
(3)上午8點(diǎn)整,時針和分針的夾角是多少?8點(diǎn)半呢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在平面直角坐標(biāo)系中,點(diǎn)A在X軸的正半軸,OA=8 ,點(diǎn)B在第一象限,∠AOB=60°,AB⊥OB垂足為B, 點(diǎn)D、C分別在邊OB、OA上,且OD=AC=t,以OD、OC為邊作平行四邊形OCED,DE交直線AB為F,CE交直線AB為點(diǎn)G.
(1) 當(dāng)t=2時, 則E的坐標(biāo)為
(2) 若ΔDFC的面積為,求t的值。
(3) 當(dāng)D、 B 、G、 E四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形時,在Y軸上存在點(diǎn)M,過點(diǎn)M作FC的平行線交直線OB為點(diǎn)N,若以M、 N、 F、 C為頂點(diǎn)的四邊形也是平行四邊形,則點(diǎn)M的坐標(biāo)為 (直接寫出答案)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com