已知等邊△ABC和Rt△DEF按如圖所示的位置放置,點(diǎn)B,D重合,且點(diǎn)E、B(D)、C在同一條直線上.其中∠E=90°,∠EDF=30°,AB=DE=,現(xiàn)將△DEF沿直線BC以每秒個(gè)單位向右平移,直至E點(diǎn)與C點(diǎn)重合時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)試求出在平移過程中,點(diǎn)F落在△ABC的邊上時(shí)的t值;
(2)試求出在平移過程中△ABC和Rt△DEF重疊部分的面積s與t的函數(shù)關(guān)系式;
(3)當(dāng)D與C重合時(shí),點(diǎn)H為直線DF上一動(dòng)點(diǎn),現(xiàn)將△DBH繞點(diǎn)D順時(shí)針旋轉(zhuǎn)60°得到△ACK,則是否存在點(diǎn)H使得△BHK的面積為?若存在,試求出CH的值;若不存在,請(qǐng)說明理由.
(1)8或10       (2)s=(12﹣t)2        (3)見解析

試題分析:(1)當(dāng)F在邊AB上時(shí),如圖(1),作AM⊥BC,則AM=AB=×6=9,
∵AM⊥BC,∠FEB=90°
∴EF∥AM,
∴△BEF∽△BMA,
=,即=,解得:BE=2,則移動(dòng)的距離是:6+2=8,則t==8;
當(dāng)F在AC上時(shí),如圖(2)同理可得:EC=2,則移動(dòng)的距離是:2×6﹣2=12﹣2=10,則t==10,
故t的值是:8或10;
(2)當(dāng)0<t≤6時(shí),重合部分是三角形,如圖(3),設(shè)AB與BE交于點(diǎn)N,
則BD=t,
則NB=BD=t,ND=BD=×t=t,則s=NB•ND=×t=t2
當(dāng)6<t<10時(shí),如圖(4),則CD=t﹣6,
∵∠TCB=60°,∠D=30°
∴∠DTC=30°,
∴∠D=∠DTC,
∴TC=CD=t﹣6,
則在直角△THC中,TH=TC=t﹣6)=t﹣9,
則s=18﹣CD•TH=18﹣t﹣6)(t﹣9)=﹣(t﹣6)2+18;
當(dāng)10≤t<12時(shí),重合部分如圖(5),
EC=12t,
則直角△ECJ中,EJ=EC=(12t),
則s=EC•EJ=×(12t)2=(12﹣t)2
(3)當(dāng)B,H,K在一條直線上時(shí),CH=CK=BC•tan30°=6×=6,
設(shè)CH=x,作HL⊥BC于點(diǎn)L,則HL=x,
△CKH是邊長(zhǎng)是x的等邊三角形,則面積是x2,
△BCH的面積是:BC•HL=3×x=x,
△BCK的面積是:3x.
當(dāng)0<CH<6時(shí),△BHK的面積=△BCK的面積﹣△CKH的面積﹣△BCH的面積,即3x﹣x﹣x2=4,方程無解.
當(dāng)CH>6時(shí),△BHK的面積=△CKH的面積+△BCH的面積﹣△BCK的面積,即x2+x﹣3x=4,解得:x=8或﹣2(舍去),故x=8
總之,CH=8.






點(diǎn)評(píng):本題考查了相似三角形的性質(zhì),正確對(duì)t的情況進(jìn)行分類是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,己知O為坐標(biāo)原點(diǎn),點(diǎn)A(3,0),B(0.4),以點(diǎn)A為旋轉(zhuǎn)中心,把△ABO順時(shí)針旋轉(zhuǎn),得△ACD.記旋轉(zhuǎn)角為α.∠ABO為β.

(I )如圖①,當(dāng)旋轉(zhuǎn)后點(diǎn)D恰好落在AB邊上時(shí),求點(diǎn)D的坐標(biāo);
(II)如圖②,當(dāng)旋轉(zhuǎn)后滿足BC∥x軸時(shí),求α與β之間的數(shù)量關(guān)系:
(III)當(dāng)旋轉(zhuǎn)后滿足∠AOD=β時(shí),求直線CD的解析式(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)A(10,0),以O(shè)A為直徑在第一象限內(nèi)作半圓C,點(diǎn)B是該半圓周上的一動(dòng)點(diǎn),連結(jié)OB、AB,并延長(zhǎng)AB至點(diǎn)D,使DB=AB,過點(diǎn)D作x軸垂線,分別交x軸、直線OB于點(diǎn)E、F,點(diǎn)E為垂足,連結(jié)CF.

(1)當(dāng)∠AOB=30°時(shí),求弧AB的長(zhǎng);
(2)當(dāng)DE=8時(shí),求線段EF的長(zhǎng);
(3)在點(diǎn)B運(yùn)動(dòng)過程中,是否存在以點(diǎn)E、C、F為頂點(diǎn)的三角形與△AOB相似,若存在,請(qǐng)求出此時(shí)點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,DE是△ABC的中位線,F(xiàn)是DE的中點(diǎn),C F的延長(zhǎng)線交AB于點(diǎn)G,則AG∶GD的值為________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在鈍角三角形ABC中,AB=6cm,AC=12cm,動(dòng)點(diǎn)D從A點(diǎn)出發(fā)到B點(diǎn)止,動(dòng)點(diǎn)E從C點(diǎn)出發(fā)到A點(diǎn)止.點(diǎn)D運(yùn)動(dòng)的速度為1cm/秒,點(diǎn)E運(yùn)動(dòng)的速度為2cm/秒.如果兩點(diǎn)同時(shí)運(yùn)動(dòng),那么當(dāng)以點(diǎn)A、D、E為頂點(diǎn)的三角形與△ABC相似時(shí),運(yùn)動(dòng)的時(shí)間是              

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知線段a=2,b=4,則線段a,b的比例中項(xiàng)為(    )
A.3B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1所示:等邊△ABC中,線段AD為其內(nèi)角角平分線,過D點(diǎn)的直線B1C1⊥AC于C1交AB的延長(zhǎng)線于B1
(1)請(qǐng)你探究:,是否都成立?
(2)請(qǐng)你繼續(xù)探究:若△ABC為任意三角形,線段AD為其內(nèi)角角平分線,請(qǐng)問一定成立嗎?并證明你的判斷.
(3)如圖2所示Rt△ABC中,∠ACB=90?,AC=8,AB=,E為AB上一點(diǎn)且AE=5,CE交其內(nèi)角角平分線AD于F.試求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC∽△A′B′C′,△ABC與△A′B′C′的相似比為k.
(1)如果CD和C′D′是它們的對(duì)應(yīng)高,那么等于多少?
(2)如果CD和C′D′是它們的對(duì)應(yīng)角平分線,那么等于多少?如果CD和C′D′是它們的對(duì)應(yīng)中線呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖(1),用形狀相同、大小不等的三塊直角三角形木板,恰好能拼成如圖(2)所示的四邊形ABCD、若AE=4,CE=3BE,那么這個(gè)四邊形的面積是 _________ 

查看答案和解析>>

同步練習(xí)冊(cè)答案