【題目】口袋中裝有1個紅球和2個白球,攪勻后從中摸出1個球,放回攪勻,再摸出第2個球,兩次摸球就可能出現(xiàn)3種結(jié)果:(1)都是紅球;(2)都是白球;(3)一紅一白.請你用所學(xué)的概率知識,用畫樹狀圖的方法;求每個事件發(fā)生的概率是多少?

【答案】(1)兩次摸出的球都是紅球的概率為;(2)兩次摸出的球都是白球的概率為;(3)兩次摸出的球是一紅一白的概率為

【解析】

(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與摸出兩個紅球的情況,則可求得答案.
(2)由樹狀圖得出兩次摸出的球都是白球的結(jié)果數(shù),再根據(jù)概率公式計算可得;
(3)由樹狀圖得出兩次摸出的球是一紅一白的結(jié)果數(shù),再根據(jù)概率公式計算可得.

(1)畫樹狀圖得:

∵共有9種等可能的結(jié)果,摸出兩個紅球的有1種結(jié)果,

∴兩次摸出的球都是紅球的概率為;

(2)由樹狀圖知,兩次摸出的球都是白球的有4種結(jié)果,

∴兩次摸出的球都是白球的概率為;

(3)由樹狀圖知,兩次摸出的球是一紅一白的有4種結(jié)果,

所以兩次摸出的球是一紅一白的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為1的小正方形網(wǎng)格中,△AOB的頂點均在格點上.

(1)B點關(guān)于y軸的對稱點坐標為 ;

(2)將△AOB向左平移3個單位長度得到△A1O1B1,請畫出△A1O1B1;

(3)在(2)的條件下,A1的坐標為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為等邊三角形ABC內(nèi)的一點,且P到三個頂點A,BC的距離分別為3,4,5,則ABC的面積為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以ABC的邊AB為直徑畫⊙O,交AC于點D,半徑OEBD,連接BE,DEBD,設(shè)BEAC于點F,若∠DEBDBC

(1)求證:BC是⊙O的切線;

(2)若BFBC=2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,過點B作BMAB,弦CDBM,交AB于點F,且DA=DC,連接AC,AD,延長AD交BM于點E.

(1)求證:ACD是等邊三角形;

(2)若AC=,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)過三角函數(shù),我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.

類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在ABC中,AB=AC,頂角A的正對記作sadA,這時sad A=.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.

根據(jù)上述對角的正對定義,解下列問題:

(1)求sad60°的值;

(2)對于0°<A<180°,A的正對值sadA的取值范圍.

(3)已知sinα=,其中α為銳角,試求sadα的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,各邊長為 2 的等邊三角形有一條 邊在同一條直線上,設(shè)△B2D1C1 面 積為 S1,△B3D2C2 的面積為 S2,…,△B2019D2018C2018 的面積為 S2018, S2018=( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABDE是直立在地面上的兩根立柱,AB=5 m,某一時刻AB在陽光下的投影BC=2 m.

(1)請你畫出此時DE在陽光下的投影;

(2)在測量AB的投影長時,同時測量出DE在陽光下的投影長為5 m,請你計算DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從寧?h到某市,可乘坐普通列車或高鐵,已知高鐵的行駛路程與普通列車的行駛路程之和是920千米,而普通列車的行駛路程是高鐵的行駛路程的1.3倍.

1)求普通列車的行駛路程;

2)若高鐵的平均速度(千米/時)是普通列車的平均速度(千米/時)的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間縮短3小時,求高鐵的平均速度.

查看答案和解析>>

同步練習(xí)冊答案