【題目】對于平面直角坐標系xOy中的點P(a,b),若點P′的坐標為(a+kb,ka+b)(其中k為常數(shù),且k≠0),
則稱點P′為點P的“k屬派生點”.例如:P(1,4)的“2屬派生點”為P′(1+2×4,2×1+4),即P′(9,6).
(Ⅰ)點P(﹣2,3)的“3屬派生點”P′的坐標為 ;
(Ⅱ)若點P的“5屬派生點”P′的坐標為(3,﹣9),求點P的坐標;
(Ⅲ)若點P在x軸的正半軸上,點P的“k屬派生點”為P′點,且線段PP′的長度為線段OP長度的2倍,求k的值.
【答案】(Ⅰ)(7,﹣3);(Ⅱ)點P(﹣2,1)(Ⅲ)k=±2
【解析】
(Ⅰ)根據(jù)“k屬派生點”計算可得;(Ⅱ)設點P的坐標為(x、y),根據(jù)“k屬派生點”定義及P′的坐標列出關于x、y的方程組,解之可得;(Ⅲ)先得出點P′的坐標為(a,ka),由線段PP′的長度為線段OP長度的2倍列出方程,解之可得.
(Ⅰ)點P(﹣2,3)的“3屬派生點”P′的坐標為(﹣2+3×3,﹣2×3+3),即(7,﹣3),
故答案為:(7,﹣3);
(Ⅱ)設P(x,y),
依題意,得方程組:,
解得,
∴點P(﹣2,1).
(Ⅲ)∵點P(a,b)在x軸的正半軸上,
∴b=0,a>0.
∴點P的坐標為(a,0),點P′的坐標為(a,ka),
∴線段PP′的長為點P′到x軸距離為|ka|,
∵P在x軸正半軸,線段OP的長為a,
根據(jù)題意,有|PP'|=2|OP|,
∴|ka|=2a,
∵a>0,
∴|k|=2.
從而k=±2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在AB、AC上各取一點E、D,使AE=AD,連接BD、CE相交于點O,再連接AO、BC,若∠1=∠2,則圖中全等三角形共有( 。
A. 5對 B. 6對 C. 7對 D. 8對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖①所示,∠1+∠2與∠B+∠C有什么關系?為什么?
(2)如圖②若把△ABC紙片沿DE點折疊當點A落在四邊形BCED內(nèi)部時,則∠A與∠α+∠β之間有一種數(shù)量關系始終保持不變,請寫出這個規(guī)律并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果一個分式的分子或分母可以因式分解,且這個分式不可約分,那么我們稱這
個分式為“和諧分式”.
(1)下列分式:①;②;③;④. 其中是“和諧分式”是 (填寫序號即可);
(2)若為正整數(shù),且為“和諧分式”,請寫出的值;
(3)在化簡時,
小東和小強分別進行了如下三步變形:
小東:
小強:
顯然,小強利用了其中的和諧分式, 第三步所得結(jié)果比小東的結(jié)果簡單,
原因是: ,
請你接著小強的方法完成化簡.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】旅游公司在景區(qū)內(nèi)配置了50輛觀光車供游客租賃使用,假定每輛觀光車一天內(nèi)最多只能出租一次,且每輛車的日租金x(元)是5的倍數(shù).發(fā)現(xiàn)每天的營運規(guī)律如下:當x不超過100元時,觀光車能全部租出;當x超過100元時,每輛車的日租金每增加5元,租出去的觀光車就會減少1輛.已知所有觀光車每天的管理費是1100元.
(1)優(yōu)惠活動期間,為使觀光車全部租出且每天的凈收入為正,則每輛車的日租金至少應為多少元?(注:凈收入=租車收入﹣管理費)
(2)當每輛車的日租金為多少元時,每天的凈收入最多?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩組同學進行一分鐘引體向上測試,評分標準規(guī)定,做6個以上含6個為合格,做9個以上含9個為優(yōu)秀,兩組同學的測試成績?nèi)缦卤恚?/span>
成績個 | 4 | 5 | 6 | 7 | 8 | 9 |
甲組人 | 1 | 2 | 5 | 2 | 1 | 4 |
乙組人 | 1 | 1 | 4 | 5 | 2 | 2 |
現(xiàn)將兩組同學的測試成績繪制成如下不完整的統(tǒng)計圖表:
統(tǒng)計量 | 平均數(shù)個 | 中位數(shù) | 眾數(shù) | 方差 | 合格率 | 優(yōu)秀率 |
甲組 | a | 6 | 6 | |||
乙組 | b | 7 |
將條形統(tǒng)計圖補充完整;
統(tǒng)計表中的______,______;
人說甲組的優(yōu)秀率高于乙組優(yōu)秀率,所以甲組成績比乙組成績好,但也有人說乙組成績比甲組成績好,請你給出兩條支持乙組成績好的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以BC為半徑作⊙B,交AB于點D,交AB的延長線于點E,連接CD、CE.
(1)求證:△ACD∽△AEC;
(2)當 = 時,求tanE;
(3)若AD=4,AC=4 ,求△ACE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com