【題目】如圖, 為⊙的直徑, 、分別是⊙的切線,切點(diǎn)為、, 、的延長線交于點(diǎn), ,交的延長線于點(diǎn).
(1)求證: ;
(2)若, ,求⊙的半徑.
【答案】(1)證明見解析;
(2)⊙的半徑.
【解析】(1)連接OC,易證∠DPO=∠BPO,∠BPO=∠EDB,故∠DPO=∠EDB
(2)在直角三角形PBD中,由PB與DB的長,利用勾股定理求出PD的長,由切線長定理得到PC=PB,由PD-PC求出CD的長,在直角三角形OCD中,設(shè)OC=r,則有OD=8-r,利用勾股定理列出關(guān)于r的方程,求出方程的解得到r的值,
試題解析:(1)連接OC,易證∠DPO=∠BPO,∠BPO=∠EDB
∴∠DPO=∠EDB
(2)在Rt△PBD中,PB=3,DB=4,
根據(jù)勾股定理得:PD=,
∵PD與PB都為圓的切線,
∴PC=PB=3,
∴DC=PD-PC=5-3=2,
在Rt△CDO中,設(shè)OC=r,則有DO=4-r,
根據(jù)勾股定理得:(4-r)2=r2+22,
解得:r=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:點(diǎn)A(x,y)為平面直角坐標(biāo)系內(nèi)的點(diǎn),若滿足x=y,則把點(diǎn)A叫做“平衡點(diǎn)”.例如:M(1,1),N(﹣2,﹣2)都是“平衡點(diǎn)”.當(dāng)﹣1≤x≤3時,直線y=2x+m上有“平衡點(diǎn)”,則m的取值范圍是( )
A.0≤m≤1
B.﹣3≤m≤1
C.﹣3≤m≤3
D.﹣1≤m≤0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD中,P為對角線AC上的任意一點(diǎn),分別連接PB、PD,PE⊥PB,交CD與E,
(1)求證:PE=PD;
(2)當(dāng)E為CD的中點(diǎn)時,求AP的長;
(3)設(shè)AP=x(),四邊形BPEC的面積為y,求證: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形是正方形,動點(diǎn)從點(diǎn)出發(fā),以cm/s的速度沿邊、、勻速運(yùn)動到終止;動點(diǎn)從出發(fā),以cm/s的速度沿邊勻速運(yùn)動到終止,若、兩點(diǎn)同時出發(fā),運(yùn)動時間為s,△的面積為cm2. 與之間函數(shù)關(guān)系的圖像如圖所示.
(1)求圖中線段所表示的函數(shù)關(guān)系式;
(2)當(dāng)動點(diǎn)在邊運(yùn)動的過程中,若以、、為頂點(diǎn)的三角形是等腰三角形,求的值;
(3)是否存在這樣的,使將正方形的面積恰好分成的兩部分?若存在,求出這樣的的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖像與軸交于點(diǎn),與軸交于點(diǎn),頂點(diǎn)的橫坐標(biāo)為.
(1)求二次函數(shù)的表達(dá)式及的坐標(biāo);
(2)若 ()是軸上一點(diǎn), ,將點(diǎn)繞著點(diǎn)順時針方向旋轉(zhuǎn)得到點(diǎn).當(dāng)點(diǎn)恰好在該二次函數(shù)的圖像上時,求的值;
(3)在(2)的條件下,連接.若是該二次函數(shù)圖像上一點(diǎn),且,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A(0,1)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種商品進(jìn)價為a元,商店將價格提高30%作零售價銷售.在銷售旺季過后,商店又以8折(即售價的80%)的價格開展促銷活動.這時一件該商品的售價為( )
A.a元
B.0.8a元
C.1.04a元
D.0.92a元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形ABCD的邊長為6,點(diǎn)E,F分別在邊AD,邊AB的延長線上,且DE=BF.
(1)如圖1,連接CE,CF,EF,請判斷△CEF的形狀;
(2)如圖2,連接EF交BD于M,當(dāng)DE=2時,求AM的長;
(3)如圖3,點(diǎn)G,H分別在邊AB,邊CD上,且GH=3,當(dāng)EF與GH的夾角為45°時,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com