【題目】如圖,在矩形ABCD中,EBC上一點(diǎn),且AEBC,DFAE,垂足是F,連接DE

求證:(1DFAB;

2DE是∠FDC的平分線.

【答案】1)見解析;(2)見解析.

【解析】

1)由矩形的性質(zhì)得出ADBC,ABDCADBC,∠B=∠C90°,得出∠DAF=∠AEB,證出ADAE,由AAS證明△ADF≌△EAB,即可得出結(jié)論;

2)由HL證明RtDEFRtDEC,得出對(duì)應(yīng)角相等∠EDF=∠EDC,即可得出結(jié)論.

1)∵四邊形ABCD是矩形,

ADBCABDC,ADBC,∠B=∠C90°,

∴∠DAF=∠AEB,

AEBC,

ADAE,

DFAE,

∴∠AFD=∠DFE90°,

∴∠AFD=∠B,

在△ADF和△EAB中,

∴△ADF≌△EABAAS),

DFAB;

2)∵DFABABDC,

DFDC,

RtDEFRtDEC中,

RtDEFRtDECHL),

∴∠EDF=∠EDC

DE是∠FDC的平分線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】全民健身運(yùn)動(dòng)已成為一種時(shí)尚,為了了解我市居民健身運(yùn)動(dòng)的情況,某健身館的工作人員開展了一項(xiàng)問卷調(diào)查,問卷包括五個(gè)項(xiàng)目:A:健身房運(yùn)動(dòng);B:跳廣場(chǎng)舞;C:參加暴走團(tuán);D:散布;E:不運(yùn)動(dòng).

以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖表的一部分.

運(yùn)動(dòng)形式

A

B

C

D

E

人數(shù)

12

30

m

54

9

請(qǐng)你根據(jù)以上信息,回答下列問題:

(1)接受問卷調(diào)查的共有   人,圖表中的m=   ,n=   ;

(2)統(tǒng)計(jì)圖中,A類所對(duì)應(yīng)的扇形圓心角的度數(shù)為   

(3)根據(jù)調(diào)查結(jié)果,我市市民最喜愛的運(yùn)動(dòng)方式是   ,不運(yùn)動(dòng)的市民所占的百分比是   ;

(4)我市碧沙崗公園是附近市民喜愛的運(yùn)動(dòng)場(chǎng)所之一,每晚都有暴走團(tuán)活動(dòng),若最鄰近的某社區(qū)約有1500人,那么估計(jì)一下該社區(qū)參加碧沙崗暴走團(tuán)的大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交

于點(diǎn)A(1,4)、點(diǎn)B(-4,n).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△OAB的面積;

(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題背景(1)如圖1,△ABC中,DE∥BC分別交AB,ACD,E兩點(diǎn),過點(diǎn)EEF∥ABBC于點(diǎn)F.請(qǐng)按圖示數(shù)據(jù)填空:△EFC的面積__________,△ADE的面積______________

探究發(fā)現(xiàn)(2)在(1)中,若BF=mFC=n,DEBC間的距離為.請(qǐng)證明

拓展遷移(3)如圖2,□DEFG的四個(gè)頂點(diǎn)在△ABC的三邊上,若△ADG、△DBE、△GFC的面積分別為3、7、5,試?yán)茫?/span>2)中的結(jié)論求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD中,FBC上一點(diǎn),且AFBC,DEAF,垂足是E,連接DF.求證:

1)△ABF≌△DEA;

2DF是∠EDC的平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,等邊△ABD與等邊△CBD的邊長(zhǎng)均為2,將△ABD沿AC方向向右平移k個(gè)單位到△A′B′D′的位置,得到圖2,則下列說法:①陰影部分的周長(zhǎng)為4;②當(dāng)k時(shí),圖中陰影部分為正六邊形;③當(dāng)k時(shí),圖中陰影部分的面積是;正確的是( )

A. B. ①②C. ①③D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題發(fā)現(xiàn):

)如圖①,中,,,,點(diǎn)邊上任意一點(diǎn),則的最小值為__________

)如圖②,矩形中,,,點(diǎn)、點(diǎn)分別在、上,求的最小值.

)如圖③,矩形中,,,點(diǎn)邊上一點(diǎn),且,點(diǎn)邊上的任意一點(diǎn),把沿翻折,點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),連接,四邊形的面積是否存在最小值,若存在,求這個(gè)最小值及此時(shí)的長(zhǎng)度;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線yax2+bx+c經(jīng)過點(diǎn)A、B、C

(1)求拋物線的解析式;

(2)若點(diǎn)P是第二象限內(nèi)拋物線上的動(dòng)點(diǎn),其橫坐標(biāo)為t,設(shè)拋物線對(duì)稱軸lx軸交于一點(diǎn)E,連接PE,交CDF,求以C、EF為頂點(diǎn)三角形與△COD相似時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,OABC是正方形,點(diǎn)A的坐標(biāo)是(4,0),點(diǎn)P為邊AB上一點(diǎn),∠CPB60°,沿CP折疊正方形,折疊后,點(diǎn)B落在平面內(nèi)點(diǎn)B′處,則B′點(diǎn)的坐標(biāo)為(  )

A. 2,2B. C. 2,D. ,

查看答案和解析>>

同步練習(xí)冊(cè)答案