【題目】某景區(qū)商店銷售一種紀(jì)念品,每件的進(jìn)貨價(jià)為40元.經(jīng)市場(chǎng)調(diào)研,當(dāng)該紀(jì)念品每件的銷售價(jià)為50元時(shí),每天可銷售200件;當(dāng)每件的銷售價(jià)每增加1元,每天的銷售數(shù)量將減少10件.
(1)當(dāng)銷售該紀(jì)念品每天能獲得利潤(rùn)2160元時(shí),每件的銷售價(jià)應(yīng)為多少?
(2)當(dāng)每件的銷售價(jià)為多少時(shí),銷售該紀(jì)念品每天獲得的利潤(rùn)最大?并求出最大利潤(rùn).
【答案】(1)每件的銷售價(jià)為52元或58元;(2)當(dāng)每件的銷售價(jià)為55元時(shí),每天獲得利潤(rùn)最大為2250元.
【解析】
(1)根據(jù)等量關(guān)系“利潤(rùn)=(售價(jià)-進(jìn)價(jià))×銷量”列出一元二次方程,解之可得;
(2)根據(jù)(1)中的相等關(guān)系列出函數(shù)關(guān)系式,配方后依據(jù)二次函數(shù)的性質(zhì)求得利潤(rùn)最大值.
(1)設(shè)每件的銷售價(jià)為x元
解得,即每件的銷售價(jià)為52元或58元
(2)
∴當(dāng)每件的銷售價(jià)為55元時(shí),每天獲得利潤(rùn)最大為2250元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的圖象經(jīng)過點(diǎn),,,已知點(diǎn)的坐標(biāo)為,點(diǎn)坐標(biāo)為,點(diǎn)在軸的正半軸,且.
(1)求拋物線的函數(shù)解析式;
(2)若直線從點(diǎn)開始沿軸向下平移,分別交軸、軸于點(diǎn)、.
①當(dāng)時(shí),在線段上否存在點(diǎn),使得點(diǎn),,構(gòu)成等腰直角三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
②以動(dòng)直線為對(duì)稱軸,線段關(guān)于直線的對(duì)稱線段與二次函數(shù)圖象有交點(diǎn),請(qǐng)直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交BC于點(diǎn)D,交CA的延長(zhǎng)線于點(diǎn)E,過點(diǎn)D作DH⊥AC,垂足為點(diǎn)H,連接DE,交AB于點(diǎn)F.
(1)求證:DH是⊙O的切線;
(2)若⊙O的半徑為4,
①當(dāng)AE=FE時(shí),求 的長(zhǎng)(結(jié)果保留π);
②當(dāng) 時(shí),求線段AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘船由A港沿北偏東65°方向航行km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏東20°方向.
求:(1)∠C的度數(shù);
(2)A,C兩港之間的距離為多少km.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)與正比例函數(shù)的圖像分別交于點(diǎn)A、B,若∠AOB=45°,則△AOB的面積是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,是邊上的動(dòng)點(diǎn)(不與點(diǎn)重合),將沿所在直線翻折,得到,連接, 則下面結(jié)論錯(cuò)誤的是( )
A.當(dāng)時(shí),
B.當(dāng)時(shí),∠
C.當(dāng) 時(shí),
D.長(zhǎng)度的最小值是1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知菱形,是動(dòng)點(diǎn),邊長(zhǎng)為4, ,則下列結(jié)論正確的有幾個(gè)( )
①; ②為等邊三角形
③ ④若,則
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=6,E是邊AD的中點(diǎn),將△ABE折疊后得到△A′BE,延長(zhǎng)BA′交CD于點(diǎn)F,則DF的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,其對(duì)稱軸為直線x=﹣1,與x軸的交點(diǎn)為(x1,0)、(x2,0),其中0<x1<1,有下列結(jié)論:①c>0;②﹣3<x2<﹣2;③a+b+c<0;④b2﹣4ac>0;⑤已知圖象上點(diǎn)A(4,y1),B(1,y2),則y1>y2.其中,正確結(jié)論的個(gè)數(shù)有( 。
A.5B.4C.3D.2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com