【題目】在平面直角坐標(biāo)系中,一個(gè)長(zhǎng)方形的三個(gè)頂點(diǎn)坐標(biāo)分別為(﹣2,﹣2),(﹣2,3),(5,﹣2),則第四個(gè)頂點(diǎn)的坐標(biāo)(  )

A. (5,3) B. (3,5) C. (7,3) D. (3,3)

【答案】A

【解析】

設(shè)點(diǎn)C的坐標(biāo)為(m,n),由長(zhǎng)方形的性質(zhì)可以得出“DC=AB,AD=BC”,由DC=AB可得出關(guān)于m的一元一次方程,由AD=BC可得出關(guān)于n的一元一次方程,解方程即可得出點(diǎn)D的坐標(biāo).

依照題意畫出圖形,如圖所示,

設(shè)點(diǎn)C的坐標(biāo)為(m,n),

∵點(diǎn)A(-2,-2),B(5,-2),D(-2,3),

AB=5-(-2)=7,DC=AB=7=m-(-2),

解得:m=5;

AD=3-(-2)=5,BC=AD=5=n-(-2),

解得:n=3

∴點(diǎn)C的坐標(biāo)為(5,3),

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】清清從家步行到公交車站臺(tái),等公交車去學(xué)校.下公交車后又步行了一段路程才到學(xué)校. 圖中的折線表示清清的行程s()與所花時(shí)間t ()之間的函數(shù)關(guān)系. 下列說(shuō)法錯(cuò)誤的是(

A. 清清等公交車時(shí)間為3分鐘 B. 清清步行的速度是80/

C. 公交車的速度是500/ D. 清清全程的平均速度為290/

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),在平面直角坐標(biāo)系中,A(a,0),C(b,2),過(guò)C作CBx軸,且滿足(a+b)2+=0.

(1)求三角形ABC的面積.

(2)若過(guò)B作BDAC交y軸于D,且AE,DE分別平分CAB,ODB,如圖2,求AED的度數(shù).

(3)在y軸上是否存在點(diǎn)P,使得三角形ABC和三角形ACP的面積相等?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點(diǎn)CD,在直線CD上有一點(diǎn)P

1)如果P點(diǎn)在CD之間運(yùn)動(dòng)時(shí),問(wèn)∠PAC,∠APB,∠PBD有怎樣的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.

2)若點(diǎn)PCD兩點(diǎn)的外側(cè)運(yùn)動(dòng)時(shí)(P點(diǎn)與點(diǎn)C、D不重合),試探索∠PAC,∠APB,∠PBD之間的關(guān)系又是如何?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,小紅將一張直角梯形紙片沿虛線剪開,得到矩形和三角形兩張紙片,測(cè)得AB=15,AD=12.在進(jìn)行如下操作時(shí)遇到了下面的幾個(gè)問(wèn)題,請(qǐng)你幫助解決.

(1)將△EFG的頂點(diǎn)G移到矩形的頂點(diǎn)B處,再將三角形繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使E點(diǎn)落在CD邊上,此時(shí),EF恰好經(jīng)過(guò)點(diǎn)A(如圖2)求FB的長(zhǎng)度;
(2)在(1)的條件下,小紅想用△EFG包裹矩形ABCD,她想了兩種包裹的方法如圖3、圖4,請(qǐng)問(wèn)哪種包裹紙片的方法使得未包裹住的面積大?(紙片厚度忽略不計(jì))請(qǐng)你通過(guò)計(jì)算說(shuō)服小紅.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)計(jì)算:(15x3y+10x2y﹣5xy2÷5xy

2)計(jì)算:(3x+y)(x+2y﹣3xx+2y

3)先化簡(jiǎn),再求值:(x+2)(x2x+12,其中x=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,ABDACE都是等邊三角形,

1)求證:ABE≌△ADC;

2)若∠ACD=15°,求∠AEB的度數(shù);

3)如圖2,當(dāng)ABDACE的位置發(fā)生變化,使C、E、D三點(diǎn)在一條直線上,求證:ACBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,ABCD中,CD=CB=2,∠C=60°,點(diǎn)E是CD邊上自D向C的動(dòng)點(diǎn)(點(diǎn)E運(yùn)動(dòng)到點(diǎn)C停止運(yùn)動(dòng)),連結(jié)AE,以AE為一邊作等邊△AEP,連結(jié)DP.
(1)求證:△ABE≌△ADP;
(2)點(diǎn)P隨點(diǎn)E的運(yùn)動(dòng)而運(yùn)動(dòng),請(qǐng)直接寫出點(diǎn)P的運(yùn)動(dòng)路徑長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,動(dòng)點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動(dòng),第1次從原點(diǎn)運(yùn)動(dòng)到點(diǎn)(1,1),第2次接著運(yùn)動(dòng)到點(diǎn)(2,0),第3次接著運(yùn)動(dòng)到點(diǎn)(3,2),…,按這樣的運(yùn)動(dòng)規(guī)律,經(jīng)過(guò)第2018次運(yùn)動(dòng)后,動(dòng)點(diǎn)P的坐標(biāo)是_____________.

查看答案和解析>>

同步練習(xí)冊(cè)答案