精英家教網 > 初中數學 > 題目詳情

已知點(1,2)在反比例函數數學公式所確定的曲線上,并且該反比例函數和一次函數y=x+1在x=b時的值相等,則b等于________.

-2或1
分析:由點(1,2)在反比例函數所確定的曲線上,解出a的值,然后與一次函數y=x+1聯立即可求出b.
解答:由點(1,2)在反比例函數所確定的曲線上,
∴2==a,即a=2,
∵反比例函數和一次函數y=x+1在x=b時的值相等,
∴b+1=,解得:b=-2或b=1.
故答案為:-2或1.
點評:本題考查了反比例函數與一次函數的交點及用待定系數法求反比例函數的解析式,屬于基礎題,關鍵要正確理解題意再進行求解.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE,連接EC,取EC的中點M,連接DM和BM.
(1)若點D在邊AC上,點E在邊AB上且與點B不重合,如圖1,探索BM、DM的關系并給予證明;
(2)如果將圖1中的△ADE繞點A逆時針旋轉小于45°的角,如圖2,那么(1)中的結論是否仍成立?如果不精英家教網成立,請舉出反例;如果成立,請給予證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知:點O到△ABC的兩邊AB、AC所在直線的距離相等,且OB=OC,
(1)若點O在BC上,求證:AB=AC;
(2)若點O在△ABC的外部,則上述結論還成立嗎?若成立請畫出圖形并完成證明過程,若不成立,請舉出反例.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知,平面直角坐標系上有A(a,0)、B(0,-b)、C(b,0)三點,且a≥b>0,拋物線y=(x-2)(x-m)-(n-2)(n-m). (m,n為常數,且m+2≥2n>0),經過點A和點C,頂點為P
(1)當m,n滿足什么關系時,S△AOB最大;
(3)如圖,當△ACP為直角三角形時,判斷以下命題是否正確:“直角三角形DEF的三個頂點都在這條拋物線上,且DF∥x軸,那么△ACP與△DEF斜邊上的高相等”,如果正確請予以證明,不正確請舉出反例.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知等腰△ABC中,AB=AC,D是BC的中點,將三角板中的90°角的頂點繞D點在△ABC內旋轉,角的兩邊分別與AB、AC交于E、F,且點E、F不與A、B、C三點重合.
(1)如果∠A=90°,求證:DE=DF;
(2)如果DF∥AB,則結論:“四邊形AEDF為直角梯形”是否正確?若正確,請證明;若不正確,請畫出草圖舉反例.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•綿陽)如圖1,在直角坐標系中,O是坐標原點,點A在y軸正半軸上,二次函數y=ax2+
1
6
x+c的圖象F交x軸于B、C兩點,交y軸于M點,其中B(-3,0),M(0,-1).已知AM=BC.
(1)求二次函數的解析式;
(2)證明:在拋物線F上存在點D,使A、B、C、D四點連接而成的四邊形恰好是平行四邊形,并請求出直線BD的解析式;
(3)在(2)的條件下,設直線l過D且分別交直線BA、BC于不同的P、Q兩點,AC、BD相交于N.
①若直線l⊥BD,如圖1,試求
1
BP
+
1
BQ
的值;
②若l為滿足條件的任意直線.如圖2.①中的結論還成立嗎?若成立,證明你的猜想;若不成立,請舉出反例.

查看答案和解析>>

同步練習冊答案