【題目】已知A(2,y1),B(﹣3,y2),C(﹣5,y3)三個(gè)點(diǎn)都在反比例函數(shù)的圖象上,比較y1,y2,y3的大小,則下列各式正確的是( )
A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y2<y1
【答案】C
【解析】
先根據(jù)﹣(k2+1)<0判斷出反比例函數(shù)圖象所在的象限,再由各點(diǎn)橫坐標(biāo)的大小判斷出各點(diǎn)所在的象限,進(jìn)而可得出結(jié)論.
解:∵反比例函數(shù)y中,k2+1>0,
∴﹣(k2+1)<0,
∴此函數(shù)圖象的兩個(gè)分支分別位于二、四象限,
∴反比例函數(shù)在第二、四象限各個(gè)象限內(nèi)y隨x的增大而增大,且第二象限內(nèi),函數(shù)值都大于0,第四象限內(nèi)函數(shù)值都小于0.
∵﹣3>﹣5,﹣3<0,2>0.
∵點(diǎn)B(﹣3,y2),C(﹣5,y3)位于第二象限,點(diǎn)A(2,y1)位于第四象限,
∴y1<y3<y2.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長(zhǎng)為半徑作,交射線OB于點(diǎn)D,連接CD;
(2)分別以點(diǎn)C,D為圓心,CD長(zhǎng)為半徑作弧,交于點(diǎn)M,N;
(3)連接OM,MN.
根據(jù)以上作圖過(guò)程及所作圖形,下列結(jié)論中錯(cuò)誤的是( )
A. ∠COM=∠CODB. 若OM=MN,則∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是一輛吊車(chē)的實(shí)物圖,圖2是其工作示意圖,是可以伸縮的起重臂,其轉(zhuǎn)動(dòng)點(diǎn)離地面的高度為.當(dāng)起重臂長(zhǎng)度為,張角為118°.
(1)求操作平臺(tái)離地面的高度;
(2)當(dāng)張角為120°,其它條件不變時(shí),求操作平臺(tái)升高的高度.
(最后結(jié)果精確到0.1,參考數(shù)據(jù):,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn),兩點(diǎn),直線與軸交于點(diǎn),與軸交于點(diǎn).點(diǎn)是軸上方的拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),交直線于點(diǎn).設(shè)點(diǎn)的橫坐標(biāo)為.
(1)求拋物線的解析式;
(2)若,求的值;
(3)若點(diǎn)是點(diǎn)關(guān)于直線OE的對(duì)稱點(diǎn),是否存在點(diǎn),使點(diǎn)落在上?若存在,請(qǐng)直接寫(xiě)出相應(yīng)的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于三角函數(shù)有如下的公式:
①cos(α+β)=cosαcosβ﹣sinαsinβ;sin(α+β)=sinαcosβ+cosαsinβ;
②tan(α+β)=.
③利用這些公式可以將一些不是特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù)來(lái)求值,如tan105°=tan(45°+60°)=====.
根據(jù)上面的知識(shí),你可以選擇適當(dāng)?shù)墓浇鉀Q下面的實(shí)際問(wèn)題:
(1)求cos75°的值;
(2)如圖,直升機(jī)在一建筑物CD上方的點(diǎn)A處測(cè)得建筑物頂端點(diǎn)D的俯角α為60°,底端點(diǎn)C的俯角β為75°,此時(shí)直升機(jī)與建筑物CD的水平距離BC為42m,求建筑物CD的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BM是以AB為直徑的⊙O的切線,B為切點(diǎn),BC平分∠ABM,弦CD交AB于點(diǎn)E,DE=OE.
(1)求證:△ACB是等腰直角三角形;
(2)求證:OA2=OEDC:
(3)求tan∠ACD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形邊長(zhǎng)為,,分別為線段,上一點(diǎn),且,,與相交于,為線段上一點(diǎn)(不與端點(diǎn)重合),為線段上一點(diǎn)(不與端點(diǎn)重合),則的最小值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于點(diǎn),,點(diǎn)在以為圓心,為半徑的⊙上,是的中點(diǎn),若長(zhǎng)的最大值為,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一架無(wú)人機(jī)在距離地面高度為21.4米的點(diǎn)B處,測(cè)得地面點(diǎn)A的俯角為47°,接著,這架無(wú)人機(jī)從點(diǎn)B沿仰角為37°的方向繼續(xù)飛行20米到達(dá)點(diǎn)C,此時(shí)測(cè)得點(diǎn)C恰好在地面點(diǎn)D的正上方,且A,D兩點(diǎn)在同一水平線上,求A,D兩點(diǎn)之間的距離.(結(jié)果精確到1米;參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin47°≈0.73,cos47°≈0.68,tan47°≈1.07,≈2.45)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com