【題目】如圖,把直角梯形ABCD沿AD方向平移到梯形EFGH的位置,若HG=24 cm,WG=8 cm,CW=6 cm,求陰影部分的面積.

【答案】陰影部分的面積是168cm2.

【解析】

根據(jù)平移的變換只改變圖形的位置不改變圖形的形狀與大小可得梯形ABCD的面積等于梯形EFGH的面積,CD=HG,從而得到陰影部分的面積等于梯形DWGH的面積,再求出DW的長,然后利用梯形的面積公式列式計算即可得解.

由平移的性質(zhì)可知梯形ABCD的面積=梯形EFGH的面積,CD=HG=24 cm,

所以陰影部分的面積=梯形DWGH的面積.

因為CW=6cm,

所以DW=CD-CW=24-6=18(cm),

所以陰影部分的面積= (DW+HG)·WG=×(18+24)×8=168(cm2).

答:陰影部分的面積是168cm2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠BAC=90°,AB=AC,點M、N在邊BC上.

(1)如圖1,如果AM=AN,求證:BM=CN;

(2)如圖2,如果M、N是邊BC上任意兩點,并滿足∠MAN=45°,那么線段BMMN、NC是否有可能使等式MN2=BM2+NC2成立?如果成立,請證明;如果不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABP中,C是BP邊上一點,∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點E.
(1)求證:PA是⊙O的切線;
(2)過點C作CF⊥AD,垂足為點F,延長CF交AB于點C,若ACAB=12,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2+2bx+c與x軸交于點A、B(點A在點B的右側(cè)),且與y軸正半軸交于點C,已知A(2,0)
(1)當(dāng)B(﹣4,0)時,求拋物線的解析式;
(2)O為坐標(biāo)原點,拋物線的頂點為P,當(dāng)tan∠OAP=3時,求此拋物線的解析式;
(3)O為坐標(biāo)原點,以A為圓心OA長為半徑畫⊙A,以C為圓心, OC長為半徑畫圓⊙C,當(dāng)⊙A與⊙C外切時,求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一張矩形紙片ABC的按如圖方式折疊,使頂點B落在邊AD上(記為點B′),點A落在點A′處,折痕分別與邊AD、BC交于點E、F.
(1)試在圖中連接BE,求證:四邊形BFB′E是菱形;
(2)若AB=8,BC=16,求線段BF長能取到的整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1、l2、l3分別過正方形ABCD的三個頂點A,B,D,且相互平行,若l1與l2的距離為1,l2與l3的距離為1,則該正方形的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD,點E在CB的延長線上,聯(lián)結(jié)AE、DE,DE與邊AB交于點F,F(xiàn)G∥BE且與AE交于點G.
(1)求證:GF=BF.
(2)在BC邊上取點M,使得BM=BE,聯(lián)結(jié)AM交DE于點O.求證:FOED=ODEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一個問題:探究函數(shù)y=的圖象與性質(zhì).小美根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y=的圖象與性質(zhì)進(jìn)行了探究下面是小美的探究過程,請補充完整:

(1)函數(shù)y=的自變量x的取值范圍是 ;

(2)下表是y與x的幾組對應(yīng)值.

td style="width:28.95pt; border-top-style:solid; border-top-width:0.75pt; border-right-style:solid; border-right-width:0.75pt; border-left-style:solid; border-left-width:0.75pt; padding:3.38pt 5.03pt; vertical-align:middle">

x

-2

-1

1

2

3

4

y

0

-1

m

求m的值;

(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點.根據(jù)描出的點,畫出該函數(shù)的圖象;

(4)結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì): .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】北京市2009﹣2014年軌道交通日均客運量統(tǒng)計如圖所示.根據(jù)統(tǒng)計圖中提供的信息,預(yù)估2015年北京市軌道交通日均客運量約  萬人次,你的預(yù)估理由是 .

查看答案和解析>>

同步練習(xí)冊答案