【題目】從三角形不是等腰三角形一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.
如圖1,在中,CD為角平分線,,,求證:CD為的完美分割線.
在中,,CD是的完美分割線,且為等腰三角形,求的度數(shù).
如圖2,中,,,CD是的完美分割線,且是以CD為底邊的等腰三角形,求完美分割線CD的長.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.袋中有形狀、大小、質地完全一樣的5個紅球和1個白球,從中隨機抽出一個球,一定是紅球
B.天氣預報“明天降水概率10%”,是指明天有10%的時間會下雨
C.某地發(fā)行一種福利彩票,中獎率是千分之一,那么,買這種彩票1000張,一定會中獎
D.連續(xù)擲一枚均勻硬幣,若5次都是正面朝上,則第六次仍然可能正面朝上
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀,再填空解題:
①方程x2﹣x﹣6=0的根是x1=3,x2=﹣2,則x1+x2=1,x1x2=﹣6;
②方程2x2﹣7x+3=0的根是x1=,x2=3,則x1+x2=,x1x2=.
根據(jù)以上①②你能否猜出:
如果關于x的一元二次方程ax2+bx+c=0(a≠0,且a、b、c為常數(shù),b2﹣4ac≥0)有兩根x1、x2,那么x1+x2、x1x2與系數(shù)a、b、c有什么關系?請寫出你的猜想并說明理由.
利用公式法求出方程的根即可.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC≌△EDC.
(1)若DE∥BC(如圖1),判斷△ABC的形狀并說明理由.
(2)連結BE,交AC于F,點H是CE上的點,且CH=CF,連結DH交BE于K(如圖2).求證:∠DKF=∠ACB
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩同學用如圖所示的兩個轉盤每個轉盤被分成面積相等的4個扇形做游戲,游戲規(guī)則:甲同學轉動甲轉盤,指針所致的數(shù)作為x;已同學轉動乙轉盤,指針所指的數(shù)作為y,若指針落在分界線上,則需要重新轉動轉盤.
用列表法或畫樹狀圖法表示出的所有可能出現(xiàn)的結果.
求甲、乙兩同學各轉轉盤一次所確定的點落在反比例函數(shù)的圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2016江蘇省連云港市)環(huán)保局對某企業(yè)排污情況進行檢測,結果顯示:所排污水中硫化物的濃度超標,即硫化物的濃度超過最高允許的1.0mg/L.環(huán)保局要求該企業(yè)立即整改,在15天以內(含15天)排污達標.整改過程中,所排污水中硫化物的濃度y(mg/L)與時間x(天)的變化規(guī)律如圖所示,其中線段AB表示前3天的變化規(guī)律,從第3天起,所排污水中硫化物的濃度y與時間x成反比例關系.
(1)求整改過程中硫化物的濃度y與時間x的函數(shù)表達式;
(2)該企業(yè)所排污水中硫化物的濃度,能否在15天以內不超過最高允許的1.0mg/L?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C地在A地的正東方向,因有大山阻隔,由A地到C地需要繞行附近的B地,已知B地位于A地的北偏東67°方向,距離A地520km,C地位于B地南偏西30°方向,若要打通穿山隧道建高鐵,求線段AC的長(結果保留整數(shù))(參考數(shù)據(jù):≈1.73,sin67°≈,cos67°≈,tan67°≈ )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,,且滿足:,長方形在坐標系中(如圖1),點為坐標系的原點.
(1)求點的坐標.
(2)如圖2,若點從點出發(fā),以2個單位/秒的速度向右運動(不超過點),點從原點出發(fā),以1個單位/秒的速度向下運動(不超過點),設兩點同時出發(fā),在它們運動的過程中,四邊形的面積是否發(fā)生變化?若不變,求其值;若變化,求變化的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(-1,0),B(3,0)兩點.
(1)求該拋物線的解析式;
(2)求該拋物線的對稱軸以及頂點坐標;
(3)設(1)中的拋物線上有一個動點P,當點P在該拋物線上滑動到什么位置時,滿足S△PAB=8,并求出此時P點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com