已知⊙O中,AC為直徑,MA、MB分別切⊙O于點(diǎn)A、B.
作業(yè)寶
(Ⅰ)如圖①,若∠BAC=25°,求∠AMB的大。
(Ⅱ)如圖②,過點(diǎn)B作BD⊥AC于E,交⊙O于點(diǎn)D,若BD=MA,求∠AMB的大小.

解:(Ⅰ)∵M(jìn)A切⊙O于點(diǎn)A,
∴∠MAC=90°,又∠BAC=25°,
∴∠MAB=∠MAC-∠BAC=65°,
∵M(jìn)A、MB分別切⊙O于點(diǎn)A、B,
∴MA=MB,
∴∠MAB=∠MBA,
∴∠M=180°-(∠MAB+∠MBA)=50°;

(Ⅱ)如圖,連接AD、AB,
∵M(jìn)A⊥AC,又BD⊥AC,
∴BD∥MA,又BD=MA,
∴四邊形MADB是平行四邊形,又MA=MB,
∴四邊形MADB是菱形,
∴AD=BD.
又∵AC為直徑,AC⊥BD,
=,
∴AB=AD,又AD=BD,
∴AB=AD=BD,
∴△ABD是等邊三角形,
∴∠D=60°,
∴在菱形MADB中,∠AMB=∠D=60°.
分析:(Ⅰ)由AM與圓O相切,根據(jù)切線的性質(zhì)得到AM垂直于AC,可得出∠MAC為直角,再由∠BAC的度數(shù),用∠MAC-∠BAC求出∠MAB的度數(shù),又MA,MB為圓O的切線,根據(jù)切線長定理得到MA=MB,利用等邊對等角可得出∠MAB=∠MBA,由底角的度數(shù),利用三角形的內(nèi)角和定理即可求出∠AMB的度數(shù);
(Ⅱ)連接AB,AD,由直徑AC垂直于弦BD,根據(jù)垂徑定理得到A為優(yōu)弧的中點(diǎn),根據(jù)等弧對等弦可得出AB=AD,由AM為圓O的切線,得到AM垂直于AC,又BD垂直于AC,根據(jù)垂直于同一條直線的兩直線平行可得出BD平行于AM,又BD=AM,利用一組對邊平行且相等的四邊形為平行四邊形得到ADBM為平行四邊形,再由鄰邊MA=MB,得到ADBM為菱形,根據(jù)菱形的鄰邊相等可得出BD=AD,進(jìn)而得到AB=AD=BD,即△ABD為等邊三角形,根據(jù)等邊三角形的性質(zhì)得到∠D為60°,再利用菱形的對角相等可得出∠AMB=∠D=60°.
點(diǎn)評:此題考查了切線的性質(zhì),圓周角定理,弦、弧及圓心角之間的關(guān)系,菱形的判定與性質(zhì),等腰三角形的判定與性質(zhì),切線長定理,以及等邊三角形的判定與性質(zhì),熟練掌握性質(zhì)及定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:RT△ABC與RT△DEF中,∠ACB=∠EDF=90°,∠DEF=45°,EF=8cm,AC=16cm,BC=12cm.現(xiàn)將RT△ABC和RT△DEF按圖1的方式擺放,使點(diǎn)C與點(diǎn)E重合,點(diǎn)B、C(E)、F在同一條直線上,并按如下方式運(yùn)動.
運(yùn)動一:如圖2,△ABC從圖1的位置出發(fā),以1cm/s的速度沿EF方向向右勻速運(yùn)動,DE與AC相交于點(diǎn)Q,當(dāng)點(diǎn)Q與點(diǎn)D重合時暫停運(yùn)動;
運(yùn)動二:在運(yùn)動一的基礎(chǔ)上,如圖3,RT△ABC繞著點(diǎn)C順時針旋轉(zhuǎn),CA與DF交于點(diǎn)Q,CB與DE交于點(diǎn)P,此時點(diǎn)Q在DF上勻速運(yùn)動,速度為
2
cm/s
,當(dāng)QC⊥DF時暫停旋轉(zhuǎn);
運(yùn)動三:在運(yùn)動二的基礎(chǔ)上,如圖4,RT△ABC以1cm/s的速度沿EF向終點(diǎn)F勻速運(yùn)動,直到點(diǎn)C與點(diǎn)F重合時為止.
設(shè)運(yùn)動時間為t(s),中間的暫停不計時,
解答下列問題
(1)在RT△ABC從運(yùn)動一到最后運(yùn)動三結(jié)束時,整個過程共耗時
 
s;
(2)在整個運(yùn)動過程中,設(shè)RT△ABC與RT△DEF的重疊部分的面積為S(cm2),求S與t之間的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;
(3)在整個運(yùn)動過程中,是否存在某一時刻,點(diǎn)Q正好在線段AB的中垂線上,若存在,求出此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•邯鄲一模)如圖,在水平地面點(diǎn)A處有一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行路線是一條拋物線,在地面上落為點(diǎn)B,有人在直線AB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無蓋的圓柱形桶,試圖讓網(wǎng)球落入桶內(nèi).已知AB=20米,AC=17.5米,網(wǎng)球飛行最大高度OM=5米,圓柱形桶的直徑為0.5米,高為0.3米(網(wǎng)球的體積和圓柱形桶的厚度忽略不計).
(1)在如圖建立的坐標(biāo)系下,求網(wǎng)球飛行路線的解析式.
(2)飛行中的網(wǎng)球距發(fā)射器水平距離是17.5米時,網(wǎng)球飛行的高度是
35
16
35
16
米,若水平距離是18米時,網(wǎng)球飛行的高度是
9
5
9
5
米.
(3)如果豎直擺放5個圓柱形桶時,網(wǎng)球能不能落入桶內(nèi)?當(dāng)豎直擺放多少個桶時,網(wǎng)球可以落入桶內(nèi)?
(4)如果在C處豎直擺放一個桶,并保證發(fā)射的網(wǎng)球可以落入桶內(nèi),發(fā)射器應(yīng)向左平移多少?請直接寫出平移的范圍(
94
≈9.7,結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南通一模)已知:如圖,直y=2x+b交x軸于點(diǎn)B,交y軸于點(diǎn)C,點(diǎn)A為x軸正半軸上一點(diǎn),AO=CO,△ABC的面積為12.
(1)求b的值;
(2)若點(diǎn)P是線段AB中垂線上的點(diǎn),是否存在這樣的點(diǎn)P,使△PBC成為直角三角形?若存在,試直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,試說明理由;
(3)點(diǎn)Q為線段AB上一個動點(diǎn)(點(diǎn)Q與點(diǎn)A、B不重合),QE∥AC,交BC于點(diǎn)E,以QE為邊,在點(diǎn)B的異側(cè)作正方形QEFG.設(shè)AQ=m,△ABC與正方形QEFG的重疊部分的面積為S,試求S與m之間的函數(shù)關(guān)系式,并寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在Rt△ABC中,已知∠A=90°,AB=AC,G、F分別是AB、AC上的兩點(diǎn),且GF∥BC,AF=2,BG=4.
(1)求梯形BCFG的面積;
(2)有一梯形DEFG與梯形BCFG重合,固定△ABC,將梯形DEFG向右運(yùn)動,直到點(diǎn)D與點(diǎn)C重合為止,如圖②.
①若某時段運(yùn)動后形成的四邊形BDG'G中,DG⊥BG',求運(yùn)動路程BD的長,并求此時G'B2的值;
②設(shè)運(yùn)動中BD的長度為x,試用含x的代數(shù)式表示出梯形DEFG與Rt△ABC重合部分的面積S.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

探索函數(shù)y=x+
1
x
(x>0)
的圖象和性質(zhì).
已知函數(shù)y=x(x>0)和y=
1
x
(x>0)
的圖象如圖所示,若P為函數(shù)y=x+
1
x
(x>0)
圖象上的點(diǎn),過P作PC垂直于x軸且與直線、雙曲線、x軸分別交于點(diǎn)A、B、C,則PC=x+
1
x
=AC+BC,從而“點(diǎn)P可以看作點(diǎn)A的沿豎直方向向上平移BC個長度單位(PA=BC)而得到”.
(1)根據(jù)以上結(jié)論,請在下圖中作出函數(shù)y=x+
1
x
(x>0)圖象上的一些點(diǎn),并畫出該函數(shù)的圖象.
(2)觀察圖象,寫出函數(shù)y=x+
1
x
(x>0)兩條不同類型的性質(zhì).

查看答案和解析>>

同步練習(xí)冊答案