先閱讀,再解題.

用配方法解一元二次方程(a≠0)如下:

移項(xiàng),得,

方程兩邊除以a,得

方程兩邊加上,得,即

因?yàn)?I>a≠0,所以,從而當(dāng)時(shí),方程右邊是一個(gè)正數(shù),正數(shù)的平方根有兩個(gè),因此方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)時(shí),方程右邊是零,因此方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)時(shí),方程右邊是一個(gè)負(fù)數(shù),而負(fù)數(shù)沒(méi)有平方根,因此方程沒(méi)有實(shí)數(shù)根.所以我們可以根據(jù)的值來(lái)判斷方程的根的情況,請(qǐng)利用上述論斷,不解方程,判別方程的根的情況.

答案:略
解析:

解:∵,

∴原方程有兩個(gè)不相等的實(shí)數(shù)根.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

21、有些大數(shù)值問(wèn)題可以通過(guò)用字母代替數(shù)轉(zhuǎn)化成整式問(wèn)題來(lái)解決,請(qǐng)先閱讀下面的解題過(guò)程,再解答下面的問(wèn)題.
例若x=123456789×123456786,y=123456788×123456787,試比較x、y的大。
解:設(shè)123456788=a,那么x=(a+1)(a-2)=a2-a-2,y=a(a-1)=a2-a,
∵x-y=(a2-a-2)-(a2-a)=-2,∴x<y
看完后,你學(xué)到了這種方法嗎?再親自試一試吧,你準(zhǔn)行!
問(wèn)題:若x=98760×98765-98761×98764,y=98761×98764-98762×98763,試比較x、y的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

先閱讀,再解題
用配方法解一元二次方程ax2+bx+c=0(a≠0)如下:
移項(xiàng),得ax2+bx=-c,
方程兩邊除以a,得x2+
b
a
x=-
c
a

方程兩邊加上(
b
2a
)2
,得x2+
b
a
x+(
b
2a
)2=-
c
a
+(
b
2a
)2
,即(x+
b
2a
)2=
b2-4ac
4a

因?yàn)閍≠0,所以4a2>0,從而當(dāng)b2-4ac>0時(shí),方程右邊是一個(gè)正數(shù),正數(shù)的平方根有兩個(gè),因此方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)b2-4ac=0時(shí),方程右邊是零,因此方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)b2-4ac>0時(shí),方程右邊是一個(gè)負(fù)數(shù),而負(fù)數(shù)沒(méi)有平方根,因此方程沒(méi)有實(shí)數(shù)根.
所以我們可以根據(jù)b2-4ac的值來(lái)判斷方程的根的情況,請(qǐng)利用上述論斷,不解方程,判別下列方程的根的情況.
(1)x2-14x+12=0        (2)4x2+12x+9=0        (3)2x2-3x+6=0        (4)3x2+3x-4=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

先閱讀,再解題
用配方法解一元二次方程ax2+bx+c=0(a≠0)如下:
移項(xiàng),得ax2+bx=-c,
方程兩邊除以a,得x2+
b
a
x=-
c
a

方程兩邊加上(
b
2a
)2
,得x2+
b
a
x+(
b
2a
)2=-
c
a
+(
b
2a
)2
,即(x+
b
2a
)2=
b2-4ac
4a

因?yàn)閍≠0,所以4a2>0,從而當(dāng)b2-4ac>0時(shí),方程右邊是一個(gè)正數(shù),正數(shù)的平方根有兩個(gè),因此方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)b2-4ac=0時(shí),方程右邊是零,因此方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)b2-4ac>0時(shí),方程右邊是一個(gè)負(fù)數(shù),而負(fù)數(shù)沒(méi)有平方根,因此方程沒(méi)有實(shí)數(shù)根.
所以我們可以根據(jù)b2-4ac的值來(lái)判斷方程的根的情況,請(qǐng)利用上述論斷,不解方程,判別下列方程的根的情況.
(1)x2-14x+12=0        (2)4x2+12x+9=0        (3)2x2-3x+6=0        (4)3x2+3x-4=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年滬科版九年級(jí)(上)期末復(fù)習(xí)數(shù)學(xué)試卷(三)(解析版) 題型:解答題

先閱讀,再解題
用配方法解一元二次方程ax2+bx+c=0(a≠0)如下:
移項(xiàng),得ax2+bx=-c,
方程兩邊除以a,得
方程兩邊加上,得,即
因?yàn)閍≠0,所以4a2>0,從而當(dāng)b2-4ac>0時(shí),方程右邊是一個(gè)正數(shù),正數(shù)的平方根有兩個(gè),因此方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)b2-4ac=0時(shí),方程右邊是零,因此方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)b2-4ac>0時(shí),方程右邊是一個(gè)負(fù)數(shù),而負(fù)數(shù)沒(méi)有平方根,因此方程沒(méi)有實(shí)數(shù)根.
所以我們可以根據(jù)b2-4ac的值來(lái)判斷方程的根的情況,請(qǐng)利用上述論斷,不解方程,判別下列方程的根的情況.
(1)x2-14x+12=0        (2)4x2+12x+9=0        (3)2x2-3x+6=0        (4)3x2+3x-4=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案