【題目】甲、乙兩山地自行車選手進(jìn)行騎行訓(xùn)練.他們?cè)谕爻霭l(fā),反向而行,分別前往A地和B地.甲先出發(fā)一分鐘且先到達(dá)A地.兩人到達(dá)目的地后均以原速按原路立即返回,直至兩人相遇.下圖是兩人之間的距離y(千米)隨乙出發(fā)時(shí)間x(分鐘)之間的變化圖象.請(qǐng)根據(jù)圖象解決下列問(wèn)題:
(1)直接寫出甲車和乙車的速度.
(2)在圖中的兩個(gè)括號(hào)內(nèi)填上正確的數(shù)值.
(3)乙車出發(fā)多長(zhǎng)時(shí)間兩車首次相距22.6千米?
【答案】(1)36,30,;(2)33,66;(3)20.
【解析】
(1)根據(jù)所給的圖象,再根據(jù)路程除以時(shí)間等于速度,即可求出甲車和乙車的速度;(2)先求出甲車與乙車的速度之差,再根據(jù)時(shí)間之差,即可求出縱坐標(biāo);先求出甲車與乙車的速度之和,再根據(jù)兩車之間的路程,即可求出橫坐標(biāo);(3)先設(shè)乙車出發(fā)x分鐘后,兩車首次相距22.6千米,根據(jù)題意列出方程,解出x的值,即可求出答案.
解:(1)甲的速度是:千米/小時(shí);
乙的速度是:千米/分鐘千米/小時(shí);
(2)根據(jù)題意得:6×(0.6-0.5)=0.6千米,
33.6-0.6=33千米;
33÷(0.6+0.5)=30分鐘,
36+30=66分鐘;
(3)設(shè)乙車出發(fā)x時(shí)間兩車首次相距22.6千米,
根據(jù)題意得:
解得:,
所以乙車出發(fā)20分鐘后兩車首次相距22.6千米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一項(xiàng)工程,甲,乙兩公司合做,12天可以完成,共需付施工費(fèi)102000元;如果甲,乙兩公司單獨(dú)完成此項(xiàng)工程,乙公司所用時(shí)間是甲公司的1.5倍,乙公司每天的施工費(fèi)比甲公司每天的施工費(fèi)少1500元.
(1)甲,乙兩公司單獨(dú)完成此項(xiàng)工程,各需多少天?
(2)若讓一個(gè)公司單獨(dú)完成這項(xiàng)工程,哪個(gè)公司的施工費(fèi)較少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求證:
(1)△AEF≌△CEB;
(2)AF=2CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的圓交AC于點(diǎn)D,交BC于點(diǎn)E,延長(zhǎng)AE至點(diǎn)F,使EF=AE,連接FB,F(xiàn)C.
(1)求證:四邊形ABFC是菱形;
(2)若AD=7,BE=2,求半圓和菱形ABFC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線與軸、軸分別交于點(diǎn)、,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)是第二象限內(nèi)直線上的一個(gè)動(dòng)點(diǎn).
(1)求的值,并在坐標(biāo)系中直接作出該直線圖象;
(2)若點(diǎn)是第二象限內(nèi)直線上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)運(yùn)動(dòng)過(guò)程中,試寫出的面積與的函數(shù)關(guān)系式,并根據(jù)已知條件寫出自變量的取值范圍;
(3)探究:當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),的面積為3?求出此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分別為E,F(xiàn).
(1)求證:△ABE≌△CDF;
(2)若AC與BD交于點(diǎn)O,求證:AO=CO.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角坐標(biāo)系內(nèi)的梯形(為原點(diǎn))中,,,,.
求經(jīng)過(guò),,三點(diǎn)的拋物線的解析式;
延長(zhǎng)交拋物線于點(diǎn),求線段的長(zhǎng);
在的條件下,動(dòng)點(diǎn)、分別從、同時(shí)出發(fā),都以每秒個(gè)單位的速度運(yùn)動(dòng),其中點(diǎn)沿由向運(yùn)動(dòng),點(diǎn)沿由由運(yùn)動(dòng)(其中一個(gè)點(diǎn)運(yùn)動(dòng)到終點(diǎn)后,另一個(gè)點(diǎn)運(yùn)動(dòng)也隨之停止),過(guò)點(diǎn)作交于點(diǎn),連接.設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)的時(shí)間為秒,請(qǐng)你探索:當(dāng)時(shí)間為何值時(shí),中有一個(gè)角是直角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為4的等邊△ABC中.
(1)如圖1,P,Q是BC邊上的兩點(diǎn),AP=AQ,∠BAP=18°,求∠AQB的度數(shù);
(2)點(diǎn)P,Q是BC邊上的兩個(gè)動(dòng)點(diǎn)(不與點(diǎn)B,C重合),點(diǎn)P在點(diǎn)Q的左側(cè),且AP=AQ,點(diǎn)Q關(guān)于直線AC的對(duì)稱點(diǎn)為M,連接AM,PM.依題意將圖2補(bǔ)全,并求證PA=PM.
(3)在(2)中,當(dāng)AM的值最小時(shí),直接寫出CM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,下列結(jié)論:
①;②;③;④;⑤;⑥當(dāng)時(shí),隨的增大而增大.
其中正確的說(shuō)法有________(寫出正確說(shuō)法的序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com