【題目】已知直線y=kx(k≠0)經(jīng)過(guò)點(diǎn)(12,﹣5),將直線向上平移m(m>0)個(gè)單位,若平移后得到的直線與半徑為6⊙O相交(點(diǎn)O為坐標(biāo)原點(diǎn)),則m的取值范圍為_____

【答案】m<

【解析】

利用待定系數(shù)法解答,得出平移后得到的直線,求出A、B點(diǎn)的坐標(biāo),轉(zhuǎn)化為直角三角形中的問(wèn)題,再由直線與圓的位置關(guān)系的判定解答.

把點(diǎn)(12,﹣5)代入直線y=kx得,
﹣5=12k,
∴k=﹣;
由y=﹣x平移m(m>0)個(gè)單位后得到的直線l所對(duì)應(yīng)的函數(shù)關(guān)系式為y=﹣x+m(m>0),
設(shè)直線l與x軸、y軸分別交于點(diǎn)A、B,(如圖所示)
當(dāng)x=0時(shí),y=m;當(dāng)y=0時(shí),x=m,
∴A(m,0),B(0,m),
即OA=m,OB=m,
在Rt△OAB中,AB=m,
過(guò)點(diǎn)O作OD⊥AB于D,
∵S△ABO=ODAB=OAOB,
OD=××,
∵m>0,解得OD=m,
由直線與圓的位置關(guān)系可知m<6,解得m<,
故答案為:m<.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn).ABC的邊BCx軸上,A、C兩點(diǎn)的坐標(biāo)分別為A0m)、Cn0),B(﹣5,0),且,點(diǎn)PB出發(fā),以每秒2個(gè)單位的速度沿射線BO勻速運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒.

1)求A、C兩點(diǎn)的坐標(biāo);

2)連接PA,用含t的代數(shù)式表示POA的面積;

3)當(dāng)P在線段BO上運(yùn)動(dòng)時(shí),是否存在一點(diǎn)P,使PAC是等腰三角形?若存在,請(qǐng)寫(xiě)出滿足條件的所有P點(diǎn)的坐標(biāo)并求t的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明投資銷(xiāo)售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷(xiāo)售過(guò)程中發(fā)現(xiàn),每月銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+500,在銷(xiāo)售過(guò)程中銷(xiāo)售單價(jià)不低于成本價(jià),而每件的利潤(rùn)不高于成本價(jià)的60%

1)設(shè)小明每月獲得利潤(rùn)為w(元),求每月獲得利潤(rùn)w(元)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式,并確定自變量x的取值范圍.

2)當(dāng)銷(xiāo)售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?每月的最大利潤(rùn)是多少?

3)如果小明想要每月獲得的利潤(rùn)不低于2000元,那么小明每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷(xiāo)售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年本市蜜桔大豐收,某水果商銷(xiāo)售一種蜜桔,成本價(jià)為10/千克,已知銷(xiāo)售價(jià)不低于成本價(jià),且物價(jià)部門(mén)規(guī)定這種產(chǎn)品的銷(xiāo)售價(jià)不高于18/千克,市場(chǎng)調(diào)查發(fā)現(xiàn)該產(chǎn)品每天的銷(xiāo)售量y(千克與銷(xiāo)售價(jià)x(元/千克之間的函數(shù)關(guān)系如圖所示

1yx之間的函數(shù)關(guān)系式;

2該經(jīng)銷(xiāo)商想要每天獲得150元的銷(xiāo)售利潤(rùn),銷(xiāo)售價(jià)應(yīng)定為多少?

銷(xiāo)售利潤(rùn)=銷(xiāo)售價(jià)成本價(jià)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)?jiān)谙旅胬ㄌ?hào)里補(bǔ)充完整證明過(guò)程:

已知:如圖,△ABC中,∠ACB90°,AF平分∠CAB,交CD于點(diǎn)E,交CB于點(diǎn)F,且∠CEF=∠CFE.求證:CDAB.

證明:∵AF平分∠CAB (已知)

1=∠2

∵∠CEF=∠CFE , 又∠3=CEF (對(duì)頂角相等)

∴∠CFE=3(等量代換)

∵在△ACF中,∠ACF90°(已知)

∴( +CFE90°

∵∠1=∠2, CFE=3(已證) ∴( + )=90°(等量代換)

在△AED, ADE90°( 三角形內(nèi)角和定理)

CDAB .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)學(xué)趣聞:上世紀(jì)九十年代,國(guó)外有人傳說(shuō):從月亮上看地球,長(zhǎng)城是肉眼唯一看得見(jiàn)的建筑物.設(shè)長(zhǎng)城的厚度為,人的正常視力能看清的最小物體所形成的視角為,且已知月、地兩球之間的距離為,根據(jù)學(xué)過(guò)的數(shù)學(xué)知識(shí),你認(rèn)為這個(gè)傳說(shuō)________.(請(qǐng)?zhí)?/span>可能不可能,參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩校參加區(qū)教育局舉辦的學(xué)生英語(yǔ)口語(yǔ)競(jìng)賽,兩校參賽人數(shù)相等.比賽結(jié)束后,發(fā)現(xiàn)學(xué)生成績(jī)分別為7分、8分、9分、10分(滿分為10分).依據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如圖所示的尚不完整的統(tǒng)計(jì)圖表.

甲校成績(jī)統(tǒng)計(jì)表

分?jǐn)?shù)

7

8

9

10

人數(shù)

11

0

8

1)在圖①中,“7所在扇形的圓心角等于______

2)請(qǐng)你將②的統(tǒng)計(jì)圖補(bǔ)充完整;

3)經(jīng)計(jì)算,乙校的平均分是8.3分,中位數(shù)是8分,請(qǐng)寫(xiě)出甲校的平均分、中位數(shù);并從平均分和中位數(shù)的角度分析哪個(gè)學(xué)校成績(jī)較好;

4)如果該教育局要組織8人的代表隊(duì)參加市級(jí)團(tuán)體賽,為便于管理,決定從這兩所學(xué)校中的一所挑選參賽選手,請(qǐng)你分析,應(yīng)選哪所學(xué)校?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,二次函數(shù)y=a(x﹣h)2+的圖象經(jīng)過(guò)原點(diǎn)O(0,0),A(2,0).

(1)寫(xiě)出該函數(shù)圖象的對(duì)稱(chēng)軸;

(2)若將線段OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)60°到OA′,試判斷點(diǎn)A′是否為該函數(shù)圖象的頂點(diǎn)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)矩形的長(zhǎng)為a,寬為b(a0,b0),則矩形的面積為ab.代數(shù)式xy(x0,y0)可以看作是邊長(zhǎng)為xy的矩形的面積.我們可以由此解一元二次方程:x2+x60(x0).具體過(guò)程如下:

①方程變形為x(x+1)6.

②畫(huà)四個(gè)邊長(zhǎng)為x+1、x的矩形如圖放置;

③由面積關(guān)系求解方程.

SABCD(x+x+1)2,又SABCD4x(x+1)+12.

(x+x+1)24x(x+1)+1,又x(x+1)6,

(2x+1)225,

x0

x2.

參照上述方法求關(guān)于x的二次方程x2+mxn0的解(x0,m0,n0).(要求:畫(huà)出示意圖,標(biāo)注相關(guān)線段的長(zhǎng)度,寫(xiě)出解題步驟)

查看答案和解析>>

同步練習(xí)冊(cè)答案