【題目】如圖,若要建一個(gè)長方形雞場,雞場的一邊靠墻,墻對面有一個(gè)2米寬的門,另三邊用竹籬笆圍成,籬笆總長33米,圍成長方形的雞場除門之外四周不能有空隙.求:

(1)若墻長為18米,要圍成雞場的面積為150平方米,則雞場的長和寬各為多少米?

(2)圍成雞場的面積可能達(dá)到200平方米嗎?

【答案】(1)養(yǎng)雞場的寬是10米,長為15米;(2)圍成養(yǎng)雞場的面積不能達(dá)到200平方米.

【解析】

(1)先設(shè)養(yǎng)雞場的寬為xm,得出長方形的長,再根據(jù)面積公式列出方程,求出x的值即可,注意x要符合題意;
(2)先設(shè)養(yǎng)雞場的寬為xm,得出長方形的長,再根據(jù)面積公式列出方程,判斷出△的值,即可得出答案;

(1)設(shè)養(yǎng)雞場的寬為x米,根據(jù)題意,得

x(33-2x+2)=150.

解得x1=10,x2=7.5,

當(dāng)x1=10時(shí),33-2x+2=15<18,

當(dāng)x2=7.5時(shí)33-2x+2=20>18,故舍去.

所以養(yǎng)雞場的寬是10米,長為15米.

(2)設(shè)養(yǎng)雞場的寬為x米,根據(jù)題意,得

x(33-2x+2)=200.

整理得:2x2-35x+200=0,

=(-35)2-4×2×200=-375<0.

所以該方程沒有實(shí)數(shù)根.

所以圍成養(yǎng)雞場的面積不能達(dá)到200平方米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根.

其中正確結(jié)論的個(gè)數(shù)是(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,完成任務(wù):

自相似圖形

定義:若某個(gè)圖形可分割為若干個(gè)都與它相似的圖形,則稱這個(gè)圖形是自相似圖形.例如:正方形ABCD中,點(diǎn)E、F、G、H分別是AB、BC、CD、DA邊的中點(diǎn),連接EG,HF交于點(diǎn)O,易知分割成的四個(gè)四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.

任務(wù):

(1)圖1中正方形ABCD分割成的四個(gè)小正方形中,每個(gè)正方形與原正方形的相似比為   

(2)如圖2,已知ABC中,ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)ABC也是“自相似圖形”,他的思路是:過點(diǎn)C作CDAB于點(diǎn)D,則CD將ABC分割成2個(gè)與它自己相似的小直角三角形.已知△ACD∽△ABC,則ACD與ABC的相似比為   ;

(3)現(xiàn)有一個(gè)矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).

請從下列A、B兩題中任選一條作答:我選擇   題.

A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個(gè)全等矩形,且與原矩形都相似,則a=   (用含b的式子表示);

如圖3﹣2若將矩形ABCD縱向分割成n個(gè)全等矩形,且與原矩形都相似,則a=   (用含n,b的式子表示);

B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個(gè)全等矩形,再將剩余的部分橫向分割成3個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含b的式子表示);

如圖4﹣2,若將矩形ABCD先縱向分割出m個(gè)全等矩形,再將剩余的部分橫向分割成n個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含m,n,b的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是等邊三角形ABC內(nèi)一點(diǎn),且PA=4PB=,PC=2,以下五個(gè)結(jié)論:①∠ BPC=120°;②∠APC=120°;③;④AB=;⑤點(diǎn)PABC三邊的距離分別為PE,PF,PG,則有 其中正確的有(

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們生活質(zhì)量的提高,凈水器已經(jīng)慢慢走入了普通百姓家庭,某電器公司銷售每臺進(jìn)價(jià)分別為 2000 元,1700 元的A,B兩種型號的凈水器,下表是近兩周的銷售情況:

1)求AB兩種型號的凈水器的銷售單價(jià);

2)若電器公司準(zhǔn)備用不多于 54000 元的金額采購這兩種型號的凈水器共 30 臺,求 A種型號的凈水器最多能采購多少臺?

3)在(2)的條件下,公司銷售完這 30 臺凈水器能否實(shí)現(xiàn)利潤超過12800 元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家的洗手盆上裝有一種抬啟式水龍頭(如圖1),完全開啟后,把手AM的仰角α=37°,此時(shí)把手端點(diǎn)A、出水口B和點(diǎn)落水點(diǎn)C在同一直線上,洗手盆及水龍頭的相關(guān)數(shù)據(jù)如圖2.(參考數(shù)據(jù):sin37°=,cos37°=,tan37°=

求把手端點(diǎn)A到BD的距離;

求CH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,G是邊長為4的正方形ABCD的邊BC上的一點(diǎn),矩形DEFG的邊EFA,GD=5.

(1)指出圖中所有的相似三角形;

(2)求FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x2+bx+c與直線AB交于A(-4,-4),B(0,4)兩點(diǎn),直線AC:y=-x-6y軸與點(diǎn)C.點(diǎn)E是直線AB上的動(dòng)點(diǎn),過點(diǎn)EEFx軸交AC于點(diǎn)F,交拋物線于點(diǎn)G.

(1)求拋物線y=-x2+bx+c的表達(dá)式;

(2)連接GB、EO,當(dāng)四邊形GEOB是平行四邊形時(shí),求點(diǎn)G的坐標(biāo);

(3)①在y軸上存在一點(diǎn)H,連接EH、HF,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),以A、E、F、H為頂點(diǎn)的四邊形是矩形?求出此時(shí)點(diǎn)E、H的坐標(biāo);

②在①的前提下,以點(diǎn)E為圓心,EH長為半徑作圓,點(diǎn)M為⊙E上一動(dòng)點(diǎn),求AM+CM的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCADE均為等腰直角三角形,連接BE,點(diǎn)F、G分別為AD、AC的中點(diǎn),連接FG.在ADEA旋轉(zhuǎn)的過程中,當(dāng)B、D、E三點(diǎn)共線時(shí),AB=,AD=1,則線段FG的長為___

查看答案和解析>>

同步練習(xí)冊答案