【題目】如圖,邊長(zhǎng)為1的正方形ABCD頂點(diǎn)A(0,1),B(1,1);一拋物線y=ax2+bx+c過點(diǎn)M(﹣1,0)且頂點(diǎn)在正方形ABCD內(nèi)部(包括在正方形的邊上),則a的取值范圍是( 。
A. ﹣2≤a≤﹣1 B. ﹣2≤a≤﹣ C. ﹣1≤a≤﹣ D. ﹣1≤a≤﹣
【答案】C
【解析】
當(dāng)頂點(diǎn)與A點(diǎn)重合,可以知道頂點(diǎn)坐標(biāo)為(0,1)且拋物線過(-1,0),由此可求出a;當(dāng)頂點(diǎn)與C點(diǎn)重合,頂點(diǎn)坐標(biāo)為(1,2)且拋物線過(-1,0),由此也可求a,然后由此可判斷a的取值范圍.
解:∵頂點(diǎn)是矩形ABCD上(包括邊界和內(nèi)部)的一個(gè)動(dòng)點(diǎn),
∴當(dāng)頂點(diǎn)與A點(diǎn)重合,頂點(diǎn)坐標(biāo)為(0,1),則拋物線解析式y=ax2+1,
∵拋物線過M(-1,0),
∴0=a+1,解得a=-1,
當(dāng)頂點(diǎn)與C點(diǎn)重合,頂點(diǎn)坐標(biāo)為(1,2),則拋物線解析式y=a(x-1)2+2,
∵拋物線過M(-1,0),
∴0=4a+2,解得a=-12
∵頂點(diǎn)可以在矩形內(nèi)部,
∴-1≤a≤-12.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀與思考:
因式分解----“分組分解法”:分組分解法指通過分組分解的方式來分解用提公因式法和公式法無法直接分解的多項(xiàng)式,比如,四項(xiàng)的多項(xiàng)式一般按照“兩兩”分組或“三一”分組進(jìn)行分組分解.分析多項(xiàng)式的特點(diǎn),恰當(dāng)?shù)姆纸M是分組分解法的關(guān)鍵.
例1:“兩兩”分組:
我們把和兩項(xiàng)分為一組,和兩項(xiàng)分為一組,分別提公因式,立即解除了困難.同樣.這道題也可以這樣做:
例2:“三一”分組:
我們把,,三項(xiàng)分為一組,運(yùn)用完全平方公式得到,再與-1用平方差公式分解,問題迎刃而解.
歸納總結(jié):用分組分解法分解因式的方法是先恰當(dāng)分組,然后用提公因式法或運(yùn)用公式法繼續(xù)分解.
請(qǐng)同學(xué)們?cè)陂喿x材料的啟發(fā)下,解答下列問題:
(1)分解因式:
①;
②
(2)若多項(xiàng)式利用分組分解法可分解為,請(qǐng)寫出,的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:如圖1,在正方形ABCD的內(nèi)部,作∠DAE=∠ABF=∠BCG=∠CDH,根據(jù)三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得四邊形EFGH是正方形.
類比探究:如圖2,在正△ABC的內(nèi)部,作∠1=∠2=∠3,AD,BE,CF兩兩相交于D,E,F三點(diǎn)(D,E,F三點(diǎn)不重合).
(1)△ABD,△BCE,△CAF是否全等?如果是,請(qǐng)選擇其中一對(duì)進(jìn)行證明;
(2)△DEF是否為正三角形?請(qǐng)說明理由;
(3)如圖3,進(jìn)一步探究發(fā)現(xiàn),△ABD的三邊存在一定的等量關(guān)系,設(shè)BD=a,AD=b,AB=c,請(qǐng)?zhí)剿?/span>a,b,c滿足的等量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我校圖書館大樓工程在招標(biāo)時(shí),接到甲乙兩個(gè)工程隊(duì)的投標(biāo)書,每施工一個(gè)月,需付甲工程隊(duì)工程款16萬元,付乙工程隊(duì)12萬元。工程領(lǐng)導(dǎo)小組根據(jù)甲乙兩隊(duì)的投標(biāo)書測(cè)算,可有三種施工方案:
(1)甲隊(duì)單獨(dú)完成此項(xiàng)工程剛好如期完工;
(2)乙隊(duì)單獨(dú)完成此項(xiàng)工程要比規(guī)定工期多用3個(gè)月;
(3)若甲乙兩隊(duì)合作2個(gè)月,剩下的工程由乙隊(duì)獨(dú)做也正好如期完工。
你覺得哪一種施工方案最節(jié)省工程款,說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=a(x2﹣4mx﹣12m2)(其中a、m是常數(shù),且a>0,m>0)的圖象與x軸分別交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸交于C(0,﹣6),點(diǎn)D在二次函數(shù)的圖象上,CD∥AB,連接AD,過點(diǎn)A作射線AE交二次函數(shù)的圖象于點(diǎn)E,AB平分∠DAE.
(1)用含m的代數(shù)式表示a;
(2)求證:為定值;
(3)設(shè)該二次函數(shù)圖象的頂點(diǎn)為F,連接FC并延長(zhǎng)交x軸的負(fù)半軸于點(diǎn)G,判斷以線段GF、AD、AE的長(zhǎng)度為三邊長(zhǎng)的三角形的面積是否能為24(+1)m2﹣48m﹣72+24,能則求出m;不能則說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,,若點(diǎn)從點(diǎn)出發(fā)以每秒的速度向點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒.
(1)若點(diǎn)恰好在的角平分線上,求出此時(shí)的值;
(2)若點(diǎn)使得時(shí),求出此時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1.其中所有正確結(jié)論的序號(hào)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根.
其中正確結(jié)論的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究與發(fā)現(xiàn):如圖1所示的圖形,像我們常見的學(xué)習(xí)用品--圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,
(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關(guān)系,并說明理由;
(2)請(qǐng)你直接利用以上結(jié)論,解決以下三個(gè)問題:
①如圖2,把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經(jīng)過點(diǎn)B、C,∠A=40°,則∠ABX+∠ACX等于多少度;
②如圖3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度數(shù);
③如圖4,∠ABD,∠ACD的10等分線相交于點(diǎn)G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com